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1. Introduction. Theorems. For SchrOdinger operators H
V(x) and Ho: D-+- +D, D- i#/&c, the wave operators W+/-

Land Z+/- are defined by the limits in (R
itH -itHo$ itHoe-itH(1.1) W,u= lim e e Z+/-u= lim e P(H) u,

t--,+/-oo t--,+/-oo

where Pc(H) is the orthogonal projection onto the continuous spectral sub-
space L(H) for H. We assume that V(x) satisfies the following condition,

where m, (m 1) / (m 2), and is the Fourier

transform. We take and fix g > 2/m,, > max(m + 2, 3m/2 2) and
an integer l _> 0.

Assumption 1.1. V(x) is a real valued function on Rm, m _> 3, such that
((x> DV) Lm* for any a <- l and satisfies either (1) ((x> a,V)

=--C(V) is sufficiently small or (2) m- 2m’--1 is odd and D"V(x) <
C.(x) - for any[a] <_ max{l, m’ 4 + l).
Under the assumption, V is H0-bounded and is short-range in the sense of
Agrnon [1]. Hence H with domain D(H) D(Ho) W’ is selfadjoint and
both limits in (1.1) exist ([1], [8])" W+/- are partial isometrics from L onto

Lc(H) and Z+/- W*. Consequently, the continuous part He of H is unitarily

equivalent to H and, for any Borel function f, f(H)P(H) W+/-f(Ho) W*,
f(Ho) W*f(H) Pc(H)W+/-. The main result of this paper is the following

Theorem 1.1. Let V satisfy Assumption 1.1 and let 0 be neither eigenva-

lue nor resonance of H. Then, for any 1 <-- p <-- co and integral 0 <-- k <- l, W+/-
L k,P

and Z+/- originally defined on (q W can be extended to bounded operators in

Remark 1.1. We say 0 is resonance of H if Au(x) q- V(x)u(x) 0
has a solution u such that (x}-ru(x) L for any T > 1/2 but not for T- 0.
Under the assumption, 0 is not resonance if m >_ 5, and is neither eigenvalue

nor resonance if C(V) is small enough.
Remark 1.2. If 0 is resonance, Theorem 1.1 never holds. If 0 is eigen-

value of H, then it does not hold in general. This can be seen by comparing
the results of [3] or [9] with Theorem 1.3 below.

In the sequel, we always assume that the condition of Theorem 1.1 is

satisfied. For Banach spaces X and Y, B(X, Y)is the space of bounded
operators from X to Y, B(X) B(X, X). Theorem 1.1 yields the following

Theorem 1.2. Let 1 <-- p, q <-- co and let 0 <- k, k’ <- be integers. Then"
c-’ f(H0)


