22. A Note on Jacobi Sums. II

By Akihiko GYOJA^{*)} and Takashi ONO^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1993)

This is a continuation of [1] which will be referred to as (I). In this paper, we follow notation and conventions of (I) with one exception; our definition of the Jacobi sum (1,1) is that of Weil [2] which differs from that in (I) only by a factor ± 1 .

§ 1. Statement of results. For a prime $l \neq 2$, let $k = k_l = Q(\zeta)$, $\zeta = e^{2\pi i/l}$, the *l* th cyclotomic field. For a prime ideal \mathfrak{p} of *k* with $\mathfrak{p} \neq l$, let $\chi_{\mathfrak{p}}(x) = (x/\mathfrak{p})_l$, the *l* th power residue symbol in *k*. Following [2], we put (1.1) $J(\mathfrak{p}) = J_{l+1}(\mathfrak{p}) = -\sum \chi_{\mathfrak{p}}(x_1) \cdots \chi_{\mathfrak{p}}(x_{l+1})$, where $x_1 + \cdots + x_{l+1} = -1$ and $x_i \in \mathbb{Z}[\zeta]/\mathfrak{p}$. Note that (1.2) $J(\mathfrak{p}) = g(\mathfrak{p})^l$,

where $g(\mathfrak{p})$ is the Gauss sum. As usual, we denote by p,q,f,g the integers such that $N\mathfrak{p} = q = p^f$, l - 1 = fg.

Consider three subgroups of the Galois group G(k / Q):

- (1.3) $G(J(\mathfrak{p})) = \{ \sigma \in G(k/Q) ; J(\mathfrak{p})^{\sigma} = J(\mathfrak{p}) \},$
- (1.4) $G^*(J(\mathfrak{p})) = \{ \sigma \in G(k/Q) ; (J(\mathfrak{p}))^{\sigma} = (J(\mathfrak{p})) \},$
- (1.5) $Z(\mathfrak{p}) = \{ \sigma \in G(k/Q) ; \mathfrak{p}^{\sigma} = \mathfrak{p} \},$

where (1.5) is the decomposition group of \mathfrak{p} whose order is f. One sees easily that

(1.6)
$$Z(\mathfrak{p}) \subset G(J(\mathfrak{p})) \subset G^*(J(\mathfrak{p})).$$

As in (I) we are interested in the subfield $Q(J(\mathfrak{p}))$ of k, i.e., the fixed field of the group $G(J(\mathfrak{p}))$. We prove the following

Theorem 1. If f is even, then $G(J(\mathfrak{p})) = G(k/Q)$. In other words, $J(\mathfrak{p}) \in Q$.

Theorem 2. If f is odd, then $G^*(J(\mathfrak{p})) = G(J(\mathfrak{p})) = Z(\mathfrak{p})$. Especially, $Q(J(\mathfrak{p}))$ is the decomposition field of \mathfrak{p} .

Remark. In case f = 1, we proved a general result without appealing to Stickelberger's theorem (see (I)). This paper is logically independent of (I).

§ 2. Proof of Theorem 1. Denote by k^+ the maximal real subfield of $k = k_l$. Call σ_l , $l \not\prec t$, the element of G(k/Q) defined by $\zeta^{\sigma_l} = \zeta^t$. Hence σ_{-1} is the generator of $G(k/k^+)$, i.e., the restriction of the complex conjugation. If f is even, then $\sigma_{-1} \in Z(\mathfrak{p})$, for G(k/Q) is cyclic. Hence $\sigma_{-1} \in G(J(\mathfrak{p}))$ by (1.6); so $J(\mathfrak{p}) \in k^+$ and, by (1.2), $J(\mathfrak{p})^2 = |J(\mathfrak{p})|^2 = q^l = p^{fl}$, or $J(\mathfrak{p}) = \pm p^{1/2fl} \in Q$.

(2.1) Remark. Actually we have $J(\mathfrak{p}) \in k^+ \Leftrightarrow f \text{ is even } \Leftrightarrow J(\mathfrak{p}) \in Q.$

^{*)} Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto University.

^{**)} Department of Mathematics, The Johns Hopkins University.