22. A Note on Jacobi Sums. II

By Akihiko GYOJA *) and Takashi ONO **)
(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1993)

This is a continuation of [1] which will be referred to as (I). In this paper, we follow notation and conventions of (I) with one exception; our definition of the Jacobi sum (1,1) is that of Weil [2] which differs from that in (I) only by a factor ± 1.
§ 1. Statement of results. For a prime $l \neq 2$, let $k=k_{l}=\boldsymbol{Q}(\zeta), \zeta=$ $e^{2 \pi i / l}$, the l th cyclotomic field. For a prime ideal \mathfrak{p} of k with $\mathfrak{p} \nmid l$, let $\chi_{\mathfrak{p}}(x)=(x / \mathfrak{p})_{l}$, the l th power residue symbol in k. Following [2], we put
(1.1) $\quad J(\mathfrak{p})=J_{l+1}(\mathfrak{p})=-\sum \chi_{\mathfrak{p}}\left(x_{1}\right) \cdots \chi_{\mathfrak{p}}\left(x_{l+1}\right)$,
where $x_{1}+\cdots+x_{l+1}=-1$ and $x_{i} \in \boldsymbol{Z}[\zeta] / \mathfrak{p}$. Note that

$$
\begin{equation*}
J(\mathfrak{p})=g(\mathfrak{p})^{l} \tag{1.2}
\end{equation*}
$$

where $g(\mathfrak{p})$ is the Gauss sum. As usual, we denote by p, q, f, g the integers such that $N \mathfrak{p}=q=p^{f}, l-1=f g$.

Consider three subgroups of the Galois group $G(k / \boldsymbol{Q})$:

$$
\begin{gather*}
G(J(\mathfrak{p}))=\left\{\sigma \in G(k / \boldsymbol{Q}) ; J(\mathfrak{p})^{\sigma}=J(\mathfrak{p})\right\}, \tag{1.3}\\
G^{*}(J(\mathfrak{p}))=\left\{\sigma \in G(k / \boldsymbol{Q}) ;(J(\mathfrak{p}))^{\sigma}=(J(\mathfrak{p}))\right\}, \tag{1.4}\\
Z(\mathfrak{p})=\left\{\sigma \in G(k / \boldsymbol{Q}) ; \mathfrak{p}^{\sigma}=\mathfrak{p}\right\}, \tag{1.5}
\end{gather*}
$$

where (1.5) is the decomposition group of \mathfrak{p} whose order is f. One sees easily that

$$
\begin{equation*}
Z(\mathfrak{p}) \subset G(J(\mathfrak{p})) \subset G^{*}(J(\mathfrak{p})) \tag{1.6}
\end{equation*}
$$

As in (I) we are interested in the subfield $\boldsymbol{Q}(J(\mathfrak{p}))$ of k, i.e., the fixed field of the group $G(J(\mathfrak{p}))$. We prove the following

Theorem 1. If f is even, then $G(J(\mathfrak{p}))=G(k / \boldsymbol{Q})$. In other words, $J(\mathfrak{p}) \in \boldsymbol{Q}$.

Theorem 2. If f is odd, then $G^{*}(J(\mathfrak{p}))=G(J(\mathfrak{p}))=Z(\mathfrak{p})$. Especially, $\boldsymbol{Q}(J(\mathfrak{p}))$ is the decomposition field of \mathfrak{p}.

Remark. In case $f=1$, we proved a general result without appealing to Stickelberger's theorem (see (I)). This paper is logically independent of (I).
§ 2. Proof of Theorem 1. Denote by k^{+}the maximal real subfield of $k=k_{l}$. Call $\sigma_{t}, l \nmid t$, the element of $G(k / \boldsymbol{Q})$ defined by $\zeta^{\sigma_{t}}=\zeta^{t}$. Hence σ_{-1} is the generator of $G\left(k / k^{+}\right)$, i.e., the restriction of the complex conjugation. If f is even, then $\sigma_{-1} \in Z(\mathfrak{p})$, for $G(k / \boldsymbol{Q})$ is cyclic. Hence $\sigma_{-1} \in$ $G(J(\mathfrak{p}))$ by (1.6); so $J(\mathfrak{p}) \in k^{+}$and, by (1.2), $J(\mathfrak{p})^{2}=|J(\mathfrak{p})|^{2}=q^{l}=p^{\overline{f l}}$, or $J(\mathfrak{p})= \pm p^{1 / 2 f l} \in \boldsymbol{Q}$.
Q.E.D.

Remark. Actually we have

$$
\begin{equation*}
J(\mathfrak{p}) \in k^{+} \Leftrightarrow f \text { is even } \Leftrightarrow J(\mathfrak{p}) \in \boldsymbol{Q} \tag{2.1}
\end{equation*}
$$

[^0]
[^0]: *) Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto University.
 **) Department of Mathematics, The Johns Hopkins University.

