19. A Continuation Principle for the 3-D Euler Equations for Incompressible Fluids in a Bounded Domain

By Taira Shirota*) and Taku Yanagisawa**)
(Communicated by Kiyosi ITÔ, M. J. A. , March 12, 1993)

1. In this paper we study the Euler equations for ideal incompressible fluids in a bounded domain Ω in \boldsymbol{R}^{3} :

$$
\begin{align*}
& u_{t}+u \cdot \nabla u+\nabla p=0, \quad \nabla \cdot u=0 \text { for } t \geq 0, x \in \Omega, \tag{1}\\
& u \cdot n=0 \text { for } t \geq 0, x \in \Gamma . \tag{2}
\end{align*}
$$

Here the boundary Γ of Ω is assumed to be of class $C^{\infty} ; t$ and x are time and space variables; $u=u(t, x)=\left(u_{1}, u_{2}, u_{3}\right)$ is the velocity and $p=p(t, x)$ is the pressure; $n=n(x)=\left(n_{1}, n_{2}, n_{3}\right)$ is the unit outward normal at $x \in \Gamma$; we write $u_{t}=\partial u / \partial t, \partial_{i}=\partial / \partial x^{i}$ for $i=1,2,3, \nabla=\left(\partial_{1}, \partial_{2}\right.$, ∂_{3}) and $u \cdot \nabla=\sum_{i=1}^{3} u_{i} \partial_{i}$.

Let $s \geq 0$ be an integer. We denote by $H^{s}\left(\Omega ; \boldsymbol{R}^{3}\right)$ the usual Sobolev space of order s on Ω taking values in \boldsymbol{R}^{3}. The norm is defined by $\|u\|_{s}^{2}=$ $\sum_{|\alpha| \leq s}\left|\partial^{\alpha} u\right|_{L^{2}(\Omega)}^{2}$, where $\partial^{\alpha}=\partial^{|\alpha|} / \partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} \partial_{3}^{\alpha_{3}}$ with $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. For $0<T<\infty$, we put

$$
X_{s}(T)=C^{0}\left([0, T] ; H^{s}\left(\Omega ; \boldsymbol{R}^{3}\right)\right) \cap C^{1}\left([0, T] ; H^{s-1}\left(\Omega ; \boldsymbol{R}^{3}\right)\right)
$$

Now we state our main
Theorem. Let $s>2$ be an integer. Suppose that u is a solution of (1), (2) belonging to $X_{s}\left(T^{\prime}\right)$ for any $T^{\prime}<T<\infty$ such that $\|u(t)\|_{s} \uparrow \infty$ as $t \uparrow T$. Then

$$
\begin{equation*}
\int_{0}^{t}|\operatorname{rot} u(\tau)|_{L^{\infty}(\Omega)} d \tau \uparrow \infty \text { as } t \uparrow T \tag{3}
\end{equation*}
$$

This theorem is an immediate consequence of the local in time existence theorem for the initial boundary value problem (1), (2) with the initial data $u^{0} \in H^{s}\left(\Omega ; \boldsymbol{R}^{3}\right)$ satisfying $\nabla \cdot u^{0}=0$ in $\Omega, u^{0} \cdot n=0$ on Γ (see [3,6]), and the following new estimate for a smooth solution u of (1), (2) such that $u \in$ $X_{s}(T)$ with $s>2$: There exists a nondecreasing continuous function $F(t, x, y)$ ≥ 0 for $t \geq 0, x \geq 0, y \geq 0$, satisfying the estimate

$$
\begin{equation*}
\|u(t)\|_{s} \leq F\left(t,\|u(0)\|_{s}, \int_{0}^{t}|\operatorname{rot} u(\tau)|_{L^{\infty}(\Omega)} d \tau\right) \quad \text { for } t \in[0, T] \tag{4}
\end{equation*}
$$

In the sequel, C is a constant which might change line by line and $u(t, x)$ is always a smooth solution of (1), (2) in the sense mentioned above.

Such a link that exists between the accumulation of the vorticity and the passible breakdown of smooth solutions for the Euler equations was shown by Beale-Kato-Majda [2] for the motion of fluids in the entire space \boldsymbol{R}^{3}.

[^0]
[^0]: *) Asahigaoka 2698-95, Hanamigawa-ku, Chiba 262.
 **) Department of Mathematics, Nara Women's University.

