19. A Continuation Principle for the 3-D Euler Equations for Incompressible Fluids in a Bounded Domain

By Taira SHIROTA^{*)} and Taku YANAGISAWA^{**)}

(Communicated by Kiyosi ITÔ, M. J. A., March 12, 1993)

1. In this paper we study the Euler equations for ideal incompressible fluids in a bounded domain Ω in \mathbf{R}^3 :

(1)
$$u_t + u \cdot \nabla u + \nabla p = 0, \quad \nabla \cdot u = 0 \text{ for } t \ge 0, x \in \Omega,$$

(2) $u \cdot n = 0$ for $t \ge 0, x \in \Gamma$.

Here the boundary Γ of Ω is assumed to be of class C^{∞} ; t and x are time and space variables; $u = u(t, x) = (u_1, u_2, u_3)$ is the velocity and p = p(t, x)is the pressure; $n = n(x) = (n_1, n_2, n_3)$ is the unit outward normal at $x \in \Gamma$; we write $u_t = \partial u / \partial t$, $\partial_i = \partial / \partial x^i$ for i = 1, 2, 3, $\nabla = (\partial_1, \partial_2, \partial_3)$ and $u \cdot \nabla = \sum_{i=1}^{3} u_i \partial_i$.

Let $s \ge 0$ be an integer. We denote by $H^{s}(\Omega; \mathbb{R}^{3})$ the usual Sobolev space of order s on Ω taking values in \mathbb{R}^{3} . The norm is defined by $||u||_{s}^{2} = \sum_{|\alpha| \le s} |\partial^{\alpha} u|_{L^{2}(\Omega)}^{2}$, where $\partial^{\alpha} = \partial^{|\alpha|} / \partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} \partial_{3}^{\alpha_{3}}$ with $\alpha = (\alpha_{1}, \alpha_{2}, \alpha_{3})$. For $0 < T < \infty$, we put

 $X_{s}(T) = C^{0}([0, T]; H^{s}(\Omega; \mathbf{R}^{3})) \cap C^{1}([0, T]; H^{s-1}(\Omega; \mathbf{R}^{3})).$ Now we state our main

Theorem. Let s > 2 be an integer. Suppose that u is a solution of (1), (2) belonging to $X_s(T')$ for any $T' < T < \infty$ such that $|| u(t) ||_s \uparrow \infty$ as $t \uparrow T$. Then (3) $\int_0^t |\operatorname{rot} u(\tau)|_{L^{\bullet}(\Omega)} d\tau \uparrow \infty$ as $t \uparrow T$.

This theorem is an immediate consequence of the local in time existence theorem for the initial boundary value problem (1), (2) with the initial data $u^0 \in H^s(\Omega; \mathbb{R}^3)$ satisfying $\nabla \cdot u^0 = 0$ in Ω , $u^0 \cdot n = 0$ on Γ (see [3,6]), and the following new estimate for a smooth solution u of (1), (2) such that $u \in X_s(T)$ with s > 2: There exists a nondecreasing continuous function $F(t, x, y) \ge 0$ for $t \ge 0$, $x \ge 0$, $y \ge 0$, satisfying the estimate

(4)
$$\| u(t) \|_{s} \leq F(t, \| u(0) \|_{s}, \int_{0}^{t} |\operatorname{rot} u(\tau)|_{L^{\infty}(\Omega)} d\tau) \text{ for } t \in [0, T].$$

In the sequel, C is a constant which might change line by line and u(t, x) is always a smooth solution of (1), (2) in the sense mentioned above.

Such a link that exists between the accumulation of the vorticity and the possible breakdown of smooth solutions for the Euler equations was shown by Beale-Kato-Majda [2] for the motion of fluids in the entire space \mathbf{R}^3 .

^{*)} Asahigaoka 2698-95, Hanamigawa-ku, Chiba 262.

^{**)} Department of Mathematics, Nara Women's University.