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§1. Introduction. We consider the heat convection equation in a
time-dependent domain 2(f) € R® We assume that the domain 2(f) varies
periodically in ¢ with period 7. In the 3-dimensional case, we proved the
existence and uniqueness of the periodic strong solution in [7] and showed
the stability of it in [8] when the data were small in a suitable sense. In this
paper, under somewhat released conditions than 3-dimensional case, we have
studied the existence, uniqueness and the stability of the periodic strong
solution. Recently, Morimoto [5] has got the periodic weak solution and
Inoue-Otani [3] obtained the periodic strong one under their various situa-
tions.

§2. Assumptions and formulation. Let 2(f) be a time-dependent
bounded space domain in R’ with the boundary 8Q2() = I', U I'(), where
I'y is the inner boundary and I'(#) is the outer one. We denote by K the
compact set which is bounded by I',, We suppose that £2(#) is included in a
fixed open ball B, with radius d such that 2(f) € B,. We make the follow-
ing assumptions:

(AO) I'; and I'(#) do not intersect each other.

(A1) For each fixed ¢t > 0, I'(§) and I, are both simple closed curves
and they are of class C°.

(A2) I'(® X {#(0 < t < T) changes smoothly (say, of class C*) with
respect to £

(A3) g(x) is a bounded and continuous vector function in R?\ int K.

(A4) B(x, t) is defined on 0R(#) and it can be extended to a vector
function b = b(x, #) of the form b = rot ¢, where c(x, ?) is defined in B X
[0, o), of class C? and periodic in ¢ with period T. Moreover, it satisfies
the following condition

B'nds=0,:i=0,1,
ry

where I'; means I'(f) and # is the outer normal vector to 092(#).

(A5) The domain Q(#), the boundary I'(¥) and the function B(x, #) vary
periodically in ¢ with period T > 0. ie, QU+ 1) =20, I'Gt+ 1) =
I'® and B(-, t+ T) = B(-, ) for each t > 0.

Now, let u = u(x, ), 0 = 6(x, #) and p = p(x, ) be the velocity of
the viscous fluid, the temperature and pressure, respectively. Furthermore,
let v, £, &, p be physical constants and g = g(x) be the gravitational vec-
tor. Then we consider the heat convection equation (HC) of Boussinesq



