18. Periodic Solutions of the 2-dimensional Heat Convection Equations

By Kazuo ŌEDA

Faculty of Science, Japan Women's University (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1993)

- §1. Introduction. We consider the heat convection equation in a time-dependent domain $\Omega(t) \subset R^2$. We assume that the domain $\Omega(t)$ varies periodically in t with period T. In the 3-dimensional case, we proved the existence and uniqueness of the periodic strong solution in [7] and showed the stability of it in [8] when the data were small in a suitable sense. In this paper, under somewhat released conditions than 3-dimensional case, we have studied the existence, uniqueness and the stability of the periodic strong solution. Recently, Morimoto [5] has got the periodic weak solution and Inoue-Ôtani [3] obtained the periodic strong one under their various situations.
- §2. Assumptions and formulation. Let $\Omega(t)$ be a time-dependent bounded space domain in R^2 with the boundary $\partial\Omega(t)=\Gamma_0\cup\Gamma(t)$, where Γ_0 is the inner boundary and $\Gamma(t)$ is the outer one. We denote by K the compact set which is bounded by Γ_0 . We suppose that $\Omega(t)$ is included in a fixed open ball B_1 with radius d such that $\Omega(t)\subset B_1$. We make the following assumptions:
 - (A0) Γ_0 and $\Gamma(t)$ do not intersect each other.
- (A1) For each fixed t > 0, $\Gamma(t)$ and Γ_0 are both simple closed curves and they are of class C^3 .
- (A2) $\Gamma(t) \times \{t\}$ (0 < t < T) changes smoothly (say, of class C^4) with respect to t.
 - (A3) g(x) is a bounded and continuous vector function in $R^2 \setminus \text{int } K$.
- (A4) $\beta(x, t)$ is defined on $\partial \Omega(t)$ and it can be extended to a vector function b = b(x, t) of the form b = rot c, where c(x, t) is defined in $B \times [0, \infty)$, of class C^3 and periodic in t with period T. Moreover, it satisfies the following condition

$$\int_{\Gamma_i} \beta \cdot n \ ds = 0, \ i = 0, 1,$$

where Γ_1 means $\Gamma(t)$ and n is the outer normal vector to $\partial \Omega(t)$.

(A5) The domain $\Omega(t)$, the boundary $\Gamma(t)$ and the function $\beta(x, t)$ vary periodically in t with period T > 0. i.e., $\Omega(t + T) = \Omega(t)$, $\Gamma(t + T) = \Gamma(t)$ and $\beta(\cdot, t + T) = \beta(\cdot, t)$ for each t > 0.

Now, let u = u(x, t), $\theta = \theta(x, t)$ and p = p(x, t) be the velocity of the viscous fluid, the temperature and pressure, respectively. Furthermore, let ν , κ , α , ρ be physical constants and g = g(x) be the gravitational vector. Then we consider the heat convection equation (HC) of Boussinesq