18. Periodic Solutions of the 2-dimensional Heat Convection Equations

By Kazuo Ōeda
Faculty of Science, Japan Women's University
(Communicated by Kiyosi ITÔ, M. J. A. , March 12, 1993)

§1. Introduction. We consider the heat convection equation in a time-dependent domain $\Omega(t) \subset R^{2}$. We assume that the domain $\Omega(t)$ varies periodically in t with period T. In the 3 -dimensional case, we proved the existence and uniqueness of the periodic strong solution in [7] and showed the stability of it in [8] when the data were small in a suitable sense. In this paper, under somewhat released conditions than 3-dimensional case, we have studied the existence, uniqueness and the stability of the periodic strong solution. Recently, Morimoto [5] has got the periodic weak solution and Inoue-Ôtani [3] obtained the periodic strong one under their various situations.
§2. Assumptions and formulation. Let $\Omega(t)$ be a time-dependent bounded space domain in R^{2} with the boundary $\partial \Omega(t)=\Gamma_{0} \cup \Gamma(t)$, where Γ_{0} is the inner boundary and $\Gamma(t)$ is the outer one. We denote by K the compact set which is bounded by Γ_{0}. We suppose that $\Omega(t)$ is included in a fixed open ball B_{1} with radius d such that $\Omega(t) \subset B_{1}$. We make the following assumptions:
(A0) Γ_{0} and $\Gamma(t)$ do not intersect each other.
(A1) For each fixed $t>0, \Gamma(t)$ and Γ_{0} are both simple closed curves and they are of class C^{3}.
(A2) $\Gamma(t) \times\{t\}(0<t<T)$ changes smoothly (say, of class C^{4}) with respect to t.
(A3) $g(x)$ is a bounded and continuous vector function in $R^{2} \backslash$ int K.
(A4) $\beta(x, t)$ is defined on $\partial \Omega(t)$ and it can be extended to a vector function $b=b(x, t)$ of the form $b=\operatorname{rot} c$, where $c(x, t)$ is defined in $B \times$ $[0, \infty)$, of class C^{3} and periodic in t with period T. Moreover, it satisfies the following condition

$$
\int_{\Gamma_{i}} \beta \cdot n d s=0, i=0,1
$$

where Γ_{1} means $\Gamma(t)$ and n is the outer normal vector to $\partial \Omega(t)$.
(A5) The domain $\Omega(t)$, the boundary $\Gamma(t)$ and the function $\beta(x, t)$ vary periodically in t with period $T>0$. i.e., $\Omega(t+T)=\Omega(t), \Gamma(t+T)=$ $\Gamma(t)$ and $\beta(\cdot, t+T)=\beta(\cdot, t)$ for each $t>0$.

Now, let $u=u(x, t), \theta=\theta(x, t)$ and $p=p(x, t)$ be the velocity of the viscous fluid, the temperature and pressure, respectively. Furthermore, let $\nu, \kappa, \alpha, \rho$ be physical constants and $g=g(x)$ be the gravitational vector. Then we consider the heat convection equation (HC) of Boussinesq

