17. New Criteria for Multivalent Meromorphic Starlike Functions of Order Alpha

By M. K. Aouf
Department of Mathematics, Faculty of Science, University of Mansoura, Egypt (Communicated by Kiyosi Itô, M. J. A., March 12, 1993)

$$
\begin{aligned}
& \text { Abstract: Let } M_{n+p-1}(\alpha)(p \in N=\{1,2, \ldots\}, n>-p .0 \leq \alpha<p) \\
& \text { deonte the class of functions of the form } \\
& \qquad f(z)=\frac{1}{z^{p}}+\frac{a_{0}}{z^{p-1}}+\frac{a_{1}}{z^{p-2}}+\cdots \\
& \text { which are regular and } p \text {-valent in the punctured disc } U^{*}=\{z: 0< \\
& |z|<1\} \text { and satisfy the condition } \\
& \qquad \operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)\right\}<-\frac{p(n+p-1)+\alpha}{n+p},|z|<1, \\
& 0 \leq \alpha<p \text {, where } \\
& \qquad D^{n+p-1} f(z)=\frac{1}{z^{p}(1-z)^{n+p}} * f(z) \quad(n>-p) . \\
& \text { It is proved that } M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha)(0 \leq \alpha<p, n>-p) \text {. Since } \\
& M_{o}(\alpha) \text { is the class of } p \text {-valent meromorphically starlike functions of order } \\
& \alpha(0 \leq \alpha<p) \text { all functions in } M_{n+p-1}(\alpha) \text { are } p \text {-valent meromorphically } \\
& \text { starlike functions of order } \alpha \text {. Further we consider the integrals of functions } \\
& \text { in } M_{n+p-1}(\alpha) .
\end{aligned}
$$

1. Introduction. Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\frac{a_{0}}{z^{p-1}}+\frac{a_{1}}{z^{p-2}}+\ldots(p \in N=\{1,2 \ldots\}) \tag{1.1}
\end{equation*}
$$

which are regular and p-valent in the punctured disc $U^{*}=\{z: 0<$ $|z|<1\}$ and let n be any integer greater than $-p$. A function $f(z)$ in Σ_{p} is said to be p-valent meromorphically starlike of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<-\alpha \quad \text { for }|z|<1 \tag{1.2}
\end{equation*}
$$

The Hadamard product or convolution of two functions f, g in \sum_{p} will be denoted by $f * g$. Let

$$
\begin{align*}
D^{n+p-1} f(z) & =\frac{1}{z^{p}(1-z)^{n+p}} * f(z) \quad(n>-p) \tag{1.3}\\
& =\frac{1}{z^{p}}\left[\frac{z^{n+2 p-1} f(z)}{(n+p-1)!}\right]^{(n+p-1)} \tag{1.4}\\
& =\frac{1}{z^{p}}+\frac{n+p}{z^{p-1}} a_{o}+\frac{(n+p)(n+p+1)}{2!z^{p-2}} a_{1}+\cdots . \tag{1.5}
\end{align*}
$$

AMS (1980) Subject Classification. 30C45-30C50.

