16. Some Generalizations of the Unicity Theorem of Nevanlinna

By Nobushige TODA

Department of Mathematics, Nagoya Institute of Technology (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1993)

1. Introduction. Let f(z) be a transcendental meromorphic function in $|z| < \infty$ and let S(f) be the set of meromorphic functions a(z) in $|z| < \infty$ which satisfy

$$T(r, a) = o(T(r, f)) \quad (r \to \infty).$$

We consider $\overline{C} = C \cup \{\infty\}$ to be a subset of S(f). We put for $a \in S(f)$ $E(f = a) = \{z : f(z) - a(z) = 0\}.$

More than sixty years ago, R. Nevanlinna proved the following theorem, which is called the Unicity Theorem.

Theorem A. Let f_1 and f_2 be transcendental meromorphic functions in $|z| < \infty$. If for five distinct values a_1, \ldots, a_5 of \overline{C}

$$E(f_1 = a_j) = E\{f_2 = a_j\} \ (j = 1,...,5)$$

then $f_1 = f_2$ ([2], p. 109, see also [1], p. 48).

 $\frac{1}{2} \left(\frac{1}{2} \right), p = 100, see use [1], p = 10).$

The following theorem was used to prove Theorem A in [2]. Theorem **B** For any $q(\geq 3)$ distinct values q of \bar{C}

Theorem B. For any $q(\geq 3)$ distinct values a_1, \ldots, a_q of \overline{C} ,

(1)
$$(q-2)T(r,f) < \sum_{j=1}^{3} \bar{N}(r,a_j) + S(r,f)$$

([2], p. 70).

The functions $f_1(z) = e^z$, $f_2(z) = e^{-z}$, with $a_1 = 0$, $a_2 = 1$, $a_3 = -1$ and $a_4 = \infty$ show that Theorem A is best ([2], p. 111).

It is an open problem to generalize Theorem A to the case when a_1, \ldots, a_5 belong to S(f) ([3]). This is neither trivial nor easy since we do not have an inequality corresponding to (1) for a_1, \ldots, a_q of S(f) except when q = 3. When q = 3, we have the following theorem.

Theorem C. Suppose that a_1, a_2 and a_3 are distinct in S(f). Then we have

$$(1+o(1))T(r,f) < \sum_{j=1}^{3} \bar{N}(r, 1/(f-a_j)) + S(r,f)$$

as $r \rightarrow \infty$ (see [1], p. 47).

It is a very interesting open problem whether (1) holds for distinct a_1, \ldots, a_q in S(f) ([1], p. 47; cf. [4], Satz 1).

The purpose of this paper is to give some generalizations of Theorem A by making use of Theorem C. We use the standard notation of the Navanlinna theory of meromorphic functions ([1], [2]) and we use ${}_{n}C_{k} = n! / (n-k)!k!$ as the binomial coefficient.

2. Lemmas. We shall give some lemmas in this section. Let f be a transcendental meromorphic function in $|z| < \infty$.