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0. Introduction. We defined coherent foliations on reduced complex
spaces in the previous papers [5,6]. In this paper, we discuss foliations of
dimension one or of codimension one on reduced complex spaces, especially
on locally irreducible complex spaces and show that our definition is an ex-
tension of the definition by G6mez-Mont [2] of foliations by curves, i.e. the
foliation whose leaves are of complex dimension one. Details of proofs are
described in [5].

1. Foliations of dimension one or of eodimension one. Let (X, Ox) be
a reduced complex space. We use the following notations:

J//x: the sheaf of germs of meromorphic functions on X
2x: the sheaf of germs of holomorphic 1-forms on X
Ox: the sheaf of germs of holomorphic vector fields on X

spX: the underlying topological space of the complex space X.
For a coherent gYx-module s3, we set

Sing :-- {x X is not x,x-free}.
For a coherent x-submodule of , we use the notation:

S(:7) := Sing U Sing(3/).
S() is an analytic set in X satisfying S() D Sing. On X- S(), is
locally a direct summand of .

Our definition of foliations on complex spaces is as follows:
Definition 1.0. Definition a) (by 1-forms).

a.0) A coherent foliation on X is a coherent x-submodule F of Dx satisfying
(1.1) dFx c Fx A Dx,x
at any x X- S (F). This condition is called the integrability condition. We
call S (F) the singular locus of the foliation F.
a.1) A coherent foliation F c Dx is said to be reduced if, for any open sub-
space UcX, F(U, Dx) and lu-s( F(U-- S(F), F) imply
F(U,F).

Definition b) (by vector fields).
b.O) A coherent foliation on X is a coherent x-submodule E of Ox satisfying
(1.2) [Ex, Ex] c Ex
at any x X- (S (E) SingX). This condition is called the intergrability
condition.

We call S (E) U SingX the singular locus of the foliation E.
b.1) A coherent foliation E Ox is said to be reduced if, for any open
subspace U c X, v F ( U Ox) and v I:-(s<.),sngx)
F(U-- (S(E) U SingX), E) imply v /’(U, E).


