By R. A. MOLLIN

Mathematics Department, University of Calgary, Canada (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1993)

Abstract: The primary purpose herein is to provide sufficient conditions for a quadratic order to have its class group generated by ambiguous ideals, and we conjecture that the conditions are in fact necessary. These conditions are given in terms of certain prime-producing quadratic polynomials.

Key words and phrases: Real quadratic order; class Group; quadratic polynomial.

§1. Notation and preliminaries. Let $[\alpha, \beta]$ denote the Z-module $\{\alpha x\}$ $+ \beta y : x, y, \in \mathbb{Z}$ and fix $D_0 \in \mathbb{Z}$ as a (positive or negative) square-free integer. Set $\sigma = 2$ if $D_0 \equiv 1 \pmod{4}$ and $\sigma = 1$ otherwise. Define $\omega_0 = (\sigma - 1)$ $(1 + \sqrt{D_0})/\sigma$, $\Delta_0 = (\omega_0 - \bar{\omega}_0)^2 = 4 D_0/\sigma^2$, where $\bar{\omega}_0$ is the algebraic conjugate of ω_0 , and let $\omega_{\Delta} = f\omega_0 + h$ where $f, h \subset \mathbb{Z}$. If we set $\mathcal{O}_{\Delta} = [1, f\omega_0] = [1, \omega_{\Delta}]$ and $\Delta = (\omega_{\Delta} - \bar{\omega}_{\Delta})^2 = f^2 \Delta_0$ then \mathcal{O}_{Δ} is an order in $Q(\sqrt{\Delta}) = f^2 \Delta_0$ $Q(\sqrt{D_0})$ having conductor f, and fundamental discriminant Δ_0 . Moreover D_0 is the radicand; i.e., the square-free kernel of the discriminant Δ . It is well-known (e.g. see [1]) that I is a non-zero ideal in $\mathcal{O}_{\mathtt{A}}$ if and only if $I = [a, b + c\omega_{\Delta}]$ where $a, b, c, \in \mathbb{Z}$ with $c \mid b, c \mid a$, and $ac \mid N(b + c\omega_{\Delta})$, where N is the norm from $Q(\sqrt{\Delta})$ to Q; i.e., $N(\alpha) = \alpha \bar{\alpha}$. I is called *primitive* if c = 1, and a > 0. In this case a is the smallest positive integer in I and $a = N(I) = (\mathcal{O}_{\Delta}: I)$. A primitive ideal I can be written as $I = [a, b + \omega_{\Delta}]$ with $0 \le b \le a$. An ideal I in \mathcal{O}_A is called *regular* if $\mathcal{O}_0 = \{\alpha \in Q(\sqrt{\Delta}) : \alpha I\}$ $\subseteq I$. All regular ideals are *invertible*. Note that an ideal I is invertible if there is an element $\gamma \in I$ such that $gcd(f, N(\gamma)) = 1$, (e.g. see [1, Theorem 7, p.122]). Thus if gcd(f, N(I)) = 1 then I is invertible. We denote equivalence of ideals by $I \sim J$ (by which we mean that there are non-zero elements α_1 and α_2 of \mathcal{O}_{Δ} with $\alpha_1 I = \alpha_2 J$), and we denote the group of equivalence classes by C_{Δ} (and note that $C_{\Delta} \cong \operatorname{Pic} \mathcal{O}_{\Delta}$). Let h_{Δ} be the order of C_{Δ} ; i.e., the class number of \mathcal{O}_{Δ} . We denote the exponent of C_{Δ} by e_{Δ} ; i.e., the smallest positive integer e_{Δ} such that $I^{e_{\Delta}} \sim 1$ for all I in C_{Δ} . Also principal ideals generated by a single element α are denoted by (α). We denote finally

$$M_{\Delta} = \begin{cases} \sqrt{-\Delta/3} \text{ if } \Delta < 0\\ \sqrt{\Delta/5} \text{ if } \Delta > 0. \end{cases}$$

The following is well-known, (e.g. see [1, Theorem 11, p.141]).

1991 Mathematics Subject Classification: 11R11, 11R29.