12. Orders in Quadratic Fields. I

By R. A. Mollin
Mathematics Department, University of Calgary, Canada
(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1993)

Abstract

The primary purpose herein is to provide sufficient conditions for a quadratic order to have its class group generated by ambiguous ideals, and we conjecture that the conditions are in fact necessary. These conditions are given in terms of certain prime-producing quadratic polynomials.

Key words and phrases: Real quadratic order; class Group; quadratic polynomial.
§1. Notation and preliminaries. Let $[\alpha, \beta]$ denote the \boldsymbol{Z}-module $\{\alpha x$ $+\beta y: x, y, \in \boldsymbol{Z}\}$ and fix $D_{0} \in \boldsymbol{Z}$ as a (positive or negative) square-free integer. Set $\sigma=2$ if $D_{0} \equiv 1(\bmod 4)$ and $\sigma=1$ otherwise. Define $\omega_{0}=(\sigma-$ $\left.1+\sqrt{D_{0}}\right) / \sigma, \Delta_{0}=\left(\omega_{0}-\bar{\omega}_{0}\right)^{2}=4 D_{0} / \sigma^{2}$, where $\bar{\omega}_{0}$ is the algebraic conjugate of ω_{0}, and let $\omega_{\Delta}=f \omega_{0}+h$ where $f, h \subset \boldsymbol{Z}$. If we set $\mathscr{O}_{\Delta}=\left[1, f \omega_{0}\right]=$ [1, ω_{Δ}] and $\Delta=\left(\omega_{\Delta}-\bar{\omega}_{\Delta}\right)^{2}=f^{2} \Delta_{0}$ then \mathscr{O}_{Δ} is an order in $Q(\sqrt{\Delta})=$ $Q\left(\sqrt{D_{0}}\right)$ having conductor f, and fundamental discriminant Δ_{0}. Moreover D_{0} is the radicand; i.e., the square-free kernel of the discriminant Δ. It is well-known (e.g. see [1]) that I is a non-zero ideal in \mathscr{O}_{Δ} if and only if $I=\left[a, b+c \omega_{\Delta}\right]$ where $a, b, c, \in \boldsymbol{Z}$ with $c|b, c| a$, and $a c \mid N\left(b+c \omega_{\Delta}\right)$, where N is the norm from $Q(\sqrt{\Delta})$ to Q; i.e., $N(\alpha)=\alpha \bar{\alpha}$. I is called primitive if $c=1$, and $a>0$. In this case a is the smallest positive integer in I and $a=N(I)=\left(\mathscr{O}_{\Delta}: I\right)$. A primitive ideal I can be written as $I=\left[a, b+\omega_{\Delta}\right]$ with $0 \leq b \leq a$. An ideal I in \mathscr{O}_{Δ} is called regular if $\mathscr{O}_{0}=\{\alpha \in Q(\sqrt{\Delta}): \alpha I$ $\subseteq I\}$. All regular ideals are invertible. Note that an ideal I is invertible if there is an element $\gamma \in I$ such that $\operatorname{gcd}(f, N(\gamma))=1$, (e.g. see [1, Theorem 7 , p.122]). Thus if $\operatorname{gcd}(f, N(I))=1$ then I is invertible. We denote equivalence of ideals by $I \sim J$ (by which we mean that there are non-zero elements α_{1} and α_{2} of \mathscr{O}_{Δ} with $\alpha_{1} I=\alpha_{2} J$), and we denote the group of equivalence classes by C_{Δ} (and note that $C_{\Delta} \cong \operatorname{Pic} \mathscr{O}_{\Delta}$). Let h_{Δ} be the order of C_{Δ}; i.e., the class number of \mathscr{O}_{Δ}. We denote the exponent of C_{Δ} by e_{Δ}; i.e., the smallest positive integer e_{Δ} such that $I^{e_{\Delta}} \sim 1$ for all I in C_{Δ}. Also principal ideals generated by a single element α are denoted by (α). We denote finally

$$
M_{\Delta}=\left\{\begin{array}{c}
\sqrt{-\Delta / 3} \text { if } \Delta<0 \\
\sqrt{\Delta / 5} \text { if } \Delta>0
\end{array}\right.
$$

The following is well-known, (e.g. see [1, Theorem 11, p.141]).

