96. On the Rank of an Elliptic Curve in Elementary 2 -extensions

By Masanari KidA
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Dec. 13, 1993)

1. Let E be an elliptic curve (i.e., an abelian variety of dimension one) defined over an algebraic number field k. For any finite field extension K of k, we denote by $E(K)$ the group of K-rational points of E. We define the Mordell-Weil rank over K of E by

$$
\operatorname{rank}(E ; K)=\operatorname{dim}_{\boldsymbol{Q}} E(K) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}
$$

which is known to be finite.
The extension K / k is called an elementary 2 -extension if it is a (Galois) (pro-) 2 -extension with the Galois group of exponent 2.

This note grew out of an effort to generalize Ono's theorem [7] on the relative Mordell-Weil rank (his $E(\kappa)$ is our E_{κ}) and its aim is to construct elliptic curves whose Mordell-Weil rank becomes infinite in a tower of elementary 2 -extensions.

We should note here that Kurcanov ([4],[5]) constructed elliptic curves defined over \boldsymbol{Q} whose ranks are infinite or stable in a $\boldsymbol{Z}_{\boldsymbol{p}}$-extension based on the theory of Mazur.
2. Let k be an algebraic number field and suppose we are given a (finite or infinite) subset $\sum=\left\{d_{\lambda}\right\}_{\lambda \in A}$ of $k^{\times} /\left(k^{\times}\right)^{2}$. We can assign a quadratic extension $k_{\lambda}=k\left(\sqrt{d_{\lambda}}\right)$ to each d_{λ} in the set \sum.

For any non-empty finite subset S of Λ, we set

$$
k_{S}=k\left(\sqrt{\prod_{i \in S} d_{i}}\right) \text { and } k(S)=k\left(\left\{\sqrt{d_{i}} \mid i \in S\right\}\right)
$$

We call the set Σ a primitive set if $[k(S): k]=2^{* S}$ holds for all finite subsets S of \sum. If \sum is primitive, then the fields k_{T} 's $(T \neq \phi, T \subseteq S)$ are exactly $2^{* S}-1$ different quadratic extensions over k in $k(S)$. For an elliptic curve E defined over k, we denote by E^{S} the twist of E by the quadratic character of k_{s} / k.

The following proposition is the key to our construction.
Proposition 1. Suppose that $\sum=\left\{d_{\lambda}\right\}_{\lambda \in \Lambda}$ is primitive and let S be any finite subset of Λ. Then we have

$$
\operatorname{rank}(E ; k(S))=\sum_{T \subseteq S} \operatorname{rank}\left(E^{T} ; k\right)
$$

where the sum is taken for all subsets T of S.
Proof. Put $S=\{1,2, \ldots, m\}$ and $S^{\prime}=\{1,2, \ldots, m-1\}$. When $m=1$, the proposition is classical (for instance, see [1]). It is easy to see that $\left[k(S): k\left(S^{\prime}\right)\right]=2$ and $k(S)=k\left(S^{\prime}\right)\left(\sqrt{d_{m}}\right)$. Therefore we obtain

$$
\operatorname{rank}(E ; k(S))=\operatorname{rank}\left(E ; k\left(S^{\prime}\right)\right)+\operatorname{rank}\left(E^{\langle m\rangle} ; k\left(S^{\prime}\right)\right)
$$

