95. Elliptic Factors of Selberg Zeta Functions

By Masao TSUZUKI

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Dec. 13, 1993)

We show that the elliptic factors of Selberg zeta functions are expressed in terms of multiple gamma functions.

§1. Elliptic factors. Let X = G/K be a rank one symmetric space of non compact type, where G is a connected semisimple Lie group with finite center, and K is a maximal compact subgroup of G. Put g = Lie(G), $\mathfrak{t} = \text{Lie}(K)$ and let \mathfrak{g}_C , \mathfrak{t}_C be their complexifications. We assume that rank G= rank K and fix a Cartan subgroup T of G which is contained in K. We choose a system of positive roots of $\Phi(\mathfrak{g}_C, \mathfrak{t}_C)$ and a singular imaginary root α_i in $\Phi^+(\mathfrak{g}_C, \mathfrak{t}_C)$. Let $G = KA_RN$ be an Iwasawa decomposition of G. From the assumption, A_R is a one dimensional real torus. We identify \mathfrak{a}_R with R as in [11]. Let ρ_0 be the half of the sum of positive roots in $\Phi(\mathfrak{g}, \mathfrak{a}_R)$. Let M be the centralizer of A_R in K, and A_I be a Cartan subgroup of M. Let m, $\mathfrak{a}_R, \mathfrak{a}_I$ be the Lie algebras of M, A_R , A_I , and \mathfrak{m}_C , $\mathfrak{a}_{R,C}$, $\mathfrak{a}_{I,C}$ their complexifications respectively. Let Γ be a discrete subgroup of G such that $vol(G/\Gamma) < \infty$. We define the elliptic factor of the Selberg zeta function for (G, Γ) as a smooth function $Z_{ell}(s)$ on a half interval (\mathfrak{a}, ∞) of R which satisfies the identity

$$(*) \qquad \left(-\frac{1}{2(s-\rho_0)}\frac{d}{ds}\right)^m \log Z_{ell}(s) = \int_0^{+\infty} I_{ell}(h_l) e^{-s(s-2\rho_0)t} t^{m-1} dt$$

for a positive integer m, where I_{ell} denotes the elliptic term of the Selberg trace formula for (G, Γ) , and h_t is the spherical fundamental solution of the heat equation $\left(\Delta + \frac{\partial}{\partial t}\right)u = 0$ on X. By this definition $Z_{ell}(s)$ is determined up to a factor $exp(P(s - \rho_0))$, where P(s) is an even polynomial. We calculate the right hand side of (*) using the Fourier inversion formula of elliptic orbital integrals [11], and determine $Z_{ell}(s)$ as a finite product of multiple gamma functions.

§2. Results. Let \mathscr{E}_{Γ} be the set of elliptic conjugacy classes of Γ , consisting of all conjugacy classes of finite orders. For $\gamma \in \mathscr{E}_{\Gamma}$, we denote by n_{γ} its order. We choose an element t_{γ} of T which is conjugate to γ in G; t_{γ} is unique up to the action of the Weyl group W = W(G, T). Let G_{γ} be the centralizer of t_{γ} in G and g_{γ} be its Lie algebra. We write Φ_{γ}^+ , Φ_I^+ the sets of all positive roots in $\Phi(g_{\gamma,C}, t_C)$, $\Phi_I = \Phi(m_C, a_{I,C})$ and r_{γ} , r_I their cardinalities respectively. For each element $w \in W$, put

$$P_{\gamma,w}(\nu) = \prod_{\beta \in \Phi^{\ddagger}} (w(-\rho_I + \nu\alpha_i), \beta) \quad (\nu \in \mathbf{R}),$$

where ρ_I is the half of the sum of roots in Φ_I^+ . For an integral $\lambda \in \sqrt{-1} t^*$,