94. On a Relative Normal Integral Basis Problem over Abelian Number Fields^{*)}

By Humio ICHIMURA

Department of Mathematics, Yokohama City University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 13, 1993)

We say that a Galois extension L/K of a number field K with Galois group G has a relative normal integral basis (RNIB, for short) when the integer ring O_L of L is free over the group ring $O_K[G]$. Let p be a prime number and assume that K contains a primitive p-th root of unity. In [3], Childs proved that an unramified cyclic extension L/K of degree p has an RNIB if and only if L is obtained by adjoining to K a p-th root of a unit of K satisfying a certain congruence. Let $\mathscr{H}(K)$ be the subgroup of $K^{\times}/K^{\times p}$ consisting of classes $[\alpha]$ ($\alpha \in K^{\times}$) for which $K(\alpha^{1/p})$ is unramified over K, and $\mathcal{N}(K)$ be the subgroup of $\mathcal{H}(K)$ consisting of classes $[\alpha] (\in \mathcal{H}(K))$ for which the unramified cyclic extension $K(\alpha^{1/p})/K$ has an RNIB. Using the above result and tools of Iwasawa theory, we shall describe, in terms of power series attached to p-adic L-functions, the Galois module structure of the quotient $\mathcal{H}(K)/\mathcal{N}(K)$ when the base field K runs over all layers of the cyclotomic \mathbf{Z}_{b} -extension of a certain imaginary abelian field (Theorem). As a corollary, we give a necessary and sufficient condition for $\mathscr{H}(K) =$ $\mathcal{N}(K)$ for such K in terms of an Iwasawa invariant and a certain distinguished polynomial. Though there are several results to the effect that relative Galois extensions have no RNIB (e.g. Fröhlich 7, Chap. 6, §3], Cougnard[4], Brinkhuis[1]), there seems to be few results in the other derection. An immediate consequence of the Corollary is that any unramified cyclic extension of degree p over K as above has an RNIB if the base field K is a "sufficiently" high layer. This paper is an announcement of the results generalizing those of our paper [10]. The details will appear elsewhere.

Let p be a fixed odd prime number and k be an imaginary abelian field satisfying the following three conditions.

(C1) k contains a primitive p-th root of unity.

(C2) $p \not\mid [k:Q]$.

(C3) There is only one prime ideal of k over p.

Typical examples of such k are (1) $k = Q(\mu_p)$, and (2) p = 3, $k = Q(\sqrt{-3}, \sqrt{d})$ where d is a rational integer with $d \equiv 2 \pmod{3}$. Let k_{∞}/k be the cyclotomic \mathbb{Z}_p -extension and k_n be its *n*-th layer ($n \ge 0$). Put $\Delta = \operatorname{Gal}(k/Q)$ and $\Gamma = \operatorname{Gal}(k_{\infty}/k)$. We write, for brevity, $\mathcal{H}_n = \mathcal{H}(k_n)$ and $\mathcal{N}_n = \mathcal{N}(k_n)$. The Galois groups Δ and Γ act on these groups naturally. Let Ψ be an irreducible character of Δ over \mathbb{Q}_p . We call such Ψ a \mathbb{Q}_p -character. We fix an irreducible component ψ of Ψ over an algebraic closure Ω_p of \mathbb{Q}_p , which we

 $^{^{*)}}$ Partially supported by Grant in Aid for Scientific Research ± 05640055 .