Some Examples of Global Gevrey Hypoellipticity and Solvability

By Todor GRAMCHEV*), Petar POPIVANOV*), and Masafumi YOSHINO**) (Communicated by Kiyosi ITÔ, M. J. A., Dec. 13, 1993)

1. Notations and results. Let $T^2 := R^2/Z^2$ be the two dimensional torus, where \boldsymbol{R} and \boldsymbol{Z} are the sets of real numbers and integers respectively. We denote the variables in T^2 by (x, y) and the differentiations on T^2 by ∂_x $= \partial/\partial x$, and $\partial y = \partial/\partial y$. We denote by $C^{\infty}(T^2)$ the set of smooth functions on T^2 . For $\sigma \ge 1$ we say that a function $f(x, y) \in C^{\infty}(T^2)$ belongs to the Gevrey class $G^{\sigma}(T^2)$ if for some C > 0 $(1.1) \quad \left| \ \partial_x^m \partial_y^n f(x, y) \ \right| \le C^{m+n+1} (m!n!)^{\sigma}, \text{ for all } m, n \in \mathbb{N}, \ (x, y) \in \mathbf{T}^2,$ with the convention that $G^{\infty}(T^2) := C^{\infty}(T^2)$, if $\sigma = \infty$. We denote by

 $G^{\sigma}(T^2)'$ the space of ultradistributions of class σ on T^2 . Clearly, $G^1(T^2)$ is the set of analytic functions on T^2 and $G^1(T^2)'$ coincides with the class of periodic hyperfunctions on T^2 (cf. [6] and [9]).

A differential operator P is said to be globally $G^{\sigma}(T^2)$ solvable on T^2 if for every $f \in G^{\sigma}(T^2)$ there exists an ultradistribution $u \in G^{\sigma}(T^2)'$ satisfying Pu=f. We say that P is globally $G^{\sigma}(T^2)$ hypoelliptic if $u\in$ $G^{\sigma}(T^2)$ when $Pu \in G^{\sigma}(T^2)$ and $u \in G^{\sigma}(T^2)'$. The operator P is said to be locally G^{σ} solvable at a point $p \in T^2$ if there exists a neighborhood U of psuch that for every $f \in G_0^{\sigma}(U)$, there exists an ultradistribution $u \in G^{\sigma}(U)'$ such that Pu = f in U. Similarly, we say that P is locally G^{σ} hypoelliptic at p if the following condition holds; if a point p does not belong to G^{σ} singular support of Pu then p does not belong to G^{σ} singular support of u.

In this note we shall give examples of first order operators with real coefficients on tori whose global properties are exotic in the following sense: Their global hypoellipticity and solvability in Gevrey class depend on Gevrey index σ . This makes a clear contrast to the known local results for operators of real principal type (cf. [5] and[1]). In fact, the first order analytic pseudodifferential operators of real principal type are not locally G^{σ} hypoelliptic for any $1 \le \sigma \le \infty$ and they are locally G^{σ} solvable for all $1 \le \sigma$ $\leq \infty$ (cf. [5] and [9]). In the global case, we have the following

Theorem 1 (Global hypoellipticity). For every number σ , $1 \leq \sigma < \infty$ we can find infinitely many linearly independent real-valued functions $a \in$ $G^1(\mathbf{T})$ such that the operators $P = \partial_x - a(x)\partial_y$ are globally $G^{\theta}(\mathbf{T}^2)$ hypoelliptic if $1 \leq \theta \leq \sigma$, while they are not globally $G^{\theta}(\mathbf{T}^2)$ hypoelliptic if $\sigma < \theta \leq \infty$.

Theorem 2 (Global solvability). For every number σ , $1 \le \sigma < \infty$ we can

Institute of Mathematics, Bulgarian Academy of Sciences, Bulgaria. Partially supported by contract MM-48/91 with MES of Bulgaria.

^{**)} Faculty of Economics, Chuo University, Japan. Supported by JSPS and Chuo University Special Research Program.