78. Gauss Decomposition of Connection Matrices and Application to Yang-Baxter Equation. II

By Kazuhiko Aomoto *) and Yoshifumi Kato**)

(Communicated by Heisuke Hironaka, m. J. A., Oct. 12, 1993)

We follow the same terminologies as in [1].

1. Gauss decomposition of \boldsymbol{G}. Case where $\boldsymbol{m}=2$. The matrix $G=G(x$ $\left.\mid \alpha_{1}\right)$ depends on x_{2} / x_{1} and of size $n+1$. We denote by $g_{n-i, n-j}=g_{n-i, n-j}\left(x_{2}\right.$ $\left./ x_{1}\right)$ its entries as

$$
\begin{equation*}
g_{n-i, n-j}=\left(Y_{i, n-i}^{+}: \operatorname{reg} Y_{j, n-j}^{-}\right)_{\Phi_{n, 2}^{(a)}} \tag{1.1}
\end{equation*}
$$

where the corresponding summits $\xi=v_{i, n-i}^{+}$and $\eta=v_{j, n-j}^{-}$are given by ξ_{k} $=x_{1} q^{1+(k-1) r}(1 \leq k \leq i), x_{2} q^{1+(k-i-1) r}(1+i \leq k \leq n)$ and $\eta_{k}=x_{1} q^{-\beta-(k-1) r}$ $(1 \leq k \leq j), x_{2} q^{-\beta-(k-i-1) \gamma}(1+j \leq k \leq n)$ respectively.

First we present a few basic properties of the principal connection matrix G.

Lemma 1.

$$
\begin{equation*}
\tau_{1} G\left(x \mid \alpha_{1}\right)={ }^{t} G\left(x \mid \alpha_{1}\right)={S_{\tau_{1}}^{\prime-1}}^{\prime-} G\left(x \mid \alpha_{1}\right) \cdot S_{\tau_{1}}^{\prime} \tag{1.2}
\end{equation*}
$$

where ${ }^{t} G\left(x \mid \alpha_{1}\right)$ denotes the transposed matrix and $S_{\tau_{1}}^{\prime}$ denotes the matrix with only non-zero $(i, n-i)$ th components $a_{i, n-i}\left(\frac{x_{2}}{x_{1}}\right)$,

$$
a_{i, n-i}(u)=u^{-2 r i(n-i)} q^{\gamma^{2} i(n-i)(-n+2 i)+i(n-i)} \frac{\theta\left(q^{-i \gamma} u\right)_{\hat{i}} \theta\left(q^{(1-i) r} u\right)_{\hat{i}}}{\theta\left(q^{1-(n-i) r} u^{-1}\right)_{\hat{i}} \theta\left(q^{1-(n-i-1) r} u^{-1}\right)_{\hat{i}}}
$$

for $\hat{\imath}=\min (i, n-i)$. In particular $a_{0, n}(u)=a_{n, 0}(u)=1$.

$$
\begin{equation*}
S_{\tau_{1}}^{\prime}=\Lambda^{-1} S_{\tau_{1}} \tau_{1} \Lambda, \text { for } \Lambda=\operatorname{Diag}\left[\lambda_{0}, \ldots, \lambda_{n}\right] \tag{1.3}
\end{equation*}
$$

where $\lambda_{i}=\lambda_{i}\left(x_{2} / x_{1}\right)=\theta\left(q^{1-i \gamma} x_{2} / x_{1}\right)_{\hat{i}} \theta\left(q^{1-(i-1) r} x_{2} / x_{1}\right)_{\hat{i}}\left(\frac{x_{2}}{x_{1}}\right)^{\hat{i}-r i(n-i)} q^{i^{2}(n-i) r^{2}-i \hat{i} r}$ and $S_{\tau_{1}}$ denotes the matrix with only non zero $(i, n-i)$ th components 1 so that $S_{\tau_{1}}^{2}=1$.

$$
\begin{gather*}
G\left(x \mid \alpha_{1}\right)^{-1}=\left(q^{2 n\left(\beta^{2}+\beta\right)} /(1-q)^{2 n}\right) M \tag{1.4}\\
G\left(x^{-1} \mid-\alpha_{1}-2 \beta+2(n-1)(\gamma-1)\right) \cdot M^{\prime}
\end{gather*}
$$

where M and M^{\prime} denote the diagonal matrices $M=\operatorname{Diag}\left[\mu_{0}, \ldots, \mu_{n}\right], M^{\prime}=$ Diag $\left[\mu_{0}^{\prime}, \ldots, \mu_{n}^{\prime}\right]$ such that $\mu_{n-i}=\left(\frac{x_{2}}{x_{1}}\right)^{2 i \beta} a_{i}\left(\frac{x_{2}}{x_{1}}\right) a_{n-i}\left(\frac{x_{1}}{x_{2}}\right) a_{n-i, i}\left(\frac{x_{2}}{x_{1}}\right), \mu_{n-i}^{\prime}=$ $\left(\frac{x_{2}}{x_{1}}\right)^{-2 i \beta} a_{i}\left(\frac{x_{1}}{x_{2}}\right) a_{n-i}\left(\frac{x_{2}}{x_{1}}\right) a_{n-i, i}\left(\frac{x_{1}}{x_{2}}\right)$. Here $a_{i}(u)$ denotes

$$
\begin{equation*}
a_{i}(u)=q^{i(i-1) \beta \gamma+\gamma^{2}(i-1) i(i+1) / 3+\gamma(i-1) i / 2} \cdot \frac{\theta\left(q^{1+\gamma}\right)_{i} \theta\left(q^{1+\beta}\right)_{i} \theta\left(q^{1+\beta} u\right)_{i}}{\theta^{\prime}(1)^{i} \theta\left(q^{1+\gamma}\right)^{i} \theta(q u)_{i}} \tag{1.5}
\end{equation*}
$$

where $\theta(u)_{i}$ denotes the product $\theta(u) \theta\left(u q^{\gamma}\right) \cdot \cdots \theta\left(u q^{(i-1) \gamma}\right)$ and $\theta^{\prime}(1)=$

[^0]
[^0]: **) Department bf Mathematics, Meijo University.

