73. Nonlinear Perron-Frobenius Problem for Order-preserving Mappings. II. —Applications

By Toshiko OGIWARA

Department of Mathematical Sciences, University of Tokyo (Communicated by Kiyosi ITÔ, M. J. A., Oct. 12, 1993)

Abstract: In this paper, we apply the results in part I of this paper to boundary value problems for a class of partial differential equations. First, we generalize the Fujita lemma, which is concerned with the properties of solutions of the equation $\Delta u + f(u) = 0$ with strictly convex function f, to the case where f is a convex function. The second example is a bifurcation problem for the semilinear elliptic equation of the form $\Delta u + \lambda f(u) = 0$ under the Dirichlet boundary conditions. We discuss properties of a bifurcation branch of solutions. The third example is a nonlinear (but positively homogeneous) eigenvalue problem.

Key words: Perron-Frobenius; order-preserving; indecomposable; bifurcation; generalized Fujita lemma.

1. Introduction. In part I of the present series of papers, we have extended the Perron-Frobenius theorem to nonlinear mappings on an infinite dimensional space. We have studied the properties of eigenvalues and the corresponding eigenvectors.

In this paper we apply the results in part I to a class of partial differential equations.

The author would like to thank Professors Ikuko Sawashima and Hiroshi Matano for helpful advice and constant encouragement.

2. Generalized Fujita lemma. In what follows, the numbered 'theorems' and 'remarks', as well as the hypotheses $A1, A2, A3, \cdots$, refer to those presented in part I.

Example 1. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$. We consider the Dirichlet boundary value problem:

(1.1)
$$\begin{cases} \Delta u + f(x, u) = 0 & \text{in } \Omega, \\ u = \varphi & \text{on } \partial \Omega, \end{cases}$$

where φ is a continuous function on $\partial\Omega$. Here $f(x, u): \bar{\Omega}\times R\to R$ is locally Hölder continuous in x, u, and locally uniformly Lipschitz continuous in u, that is, for any bounded closed interval $[a, b] \subset R$, there exists some constant C>0 such that

$$\sup_{x\in\Omega}\sup_{u,v\in[a,b]}\frac{|f(x,u)-f(x,v)|}{|u-v|}\leq C.$$

Hereafter we consider only classical solutions. (It is easily shown that