61. A Note on Jacobi Sums. III

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

This is a continuation of [1] which will be referred to as (II). In this paper, we shall reprove Theorem 2 of $(II)^{1}$ in a setting which suggests us a direction in further studies inspired by Stickelberger's theorem. We follow, in general, notation and conventions of (II). This paper is logically independent of (II).

§1. Quotient space $H(\mathfrak{P}^{\omega})$. Let K/k be a finite Galois extension of number fields K, k of finite degree over Q with the Galois group G = G(K/k). Let Π be the set of prime ideals \mathfrak{P} of K unramified for K/k. We shall call a map $\varphi: \Pi \to K^{\times}$ a function of type (S) if it satisfies the following conditions:

(S.1) $\varphi(\mathfrak{P}^s) = \varphi(\mathfrak{P})^s$ for all $s \in G$,

(S.2) there is an $\omega_{\varphi} \in \mathbf{Z}[G]$ such that $(\varphi(\mathfrak{P})) = \mathfrak{P}^{\omega_{\varphi}}$ for all $\mathfrak{P} \in \Pi$.

Using a prime \mathfrak{p} of k which splits completely in K, one sees that ω_{φ} is well-defined by φ and that ω_{φ} belongs to the center $\mathbb{Z}[G]_0$ of $\mathbb{Z}[G]$. If we denote by Φ the set of all maps φ of type (S), then Φ becomes a multiplicative group in an obvious way and the map $\varphi \to \omega_{\varphi}$ becomes a homomorphism of Φ into the additive group of $\mathbb{Z}[G]_0$ whose kernel consists of all maps $\varphi : \Pi \to \mathfrak{o}_K^{\times}$, the group of units of \mathfrak{o}_K .

As in (II), for $\varphi \in \Phi$, $\omega \in \mathbb{Z}[G]$, we put $G(\varphi(\mathfrak{P})) = \{s \in G ; \varphi(\mathfrak{P})^s = \varphi(\mathfrak{P})\},$ (1.1) $G^*(\varphi(\mathfrak{P})) = \{s \in G ; (\varphi(\mathfrak{P}))^s = (\varphi(\mathfrak{P}))\},$ $G(\mathfrak{P}^{\omega}) = \{s \in G ; (\mathfrak{P}^{\omega})^s = \mathfrak{P}^{\omega}\}.$

 $G(\mathfrak{P}^{\omega}) = \{s \in G ; (\mathfrak{P}^{\omega})^{s} = \mathfrak{P}^{\omega}\}.$ Note that we use the convention $\mathfrak{P}^{st} = (\mathfrak{P}^{t})^{s}$, $s, t \in G$. Since $\omega_{\varphi} \in \mathbb{Z}[G]_{0}$ we have, by (S.2),

(1.2)
$$G(\mathfrak{P}^{\omega_{\varphi}}) = G^*(\varphi(\mathfrak{P})) \supset G(\varphi(\mathfrak{P})) \supset G(\mathfrak{P})$$

where $G(\mathfrak{P})$ means the decomposition group of \mathfrak{P} , i.e., $G(\mathfrak{P}) = G(\mathfrak{P}^1), 1 \in \mathbb{Z}[G]$. For an $\omega \in \mathbb{Z}[G]_0$, we shall put

(1.3)
$$H(\mathfrak{P}^{\omega}) = G(\mathfrak{P}^{\omega}) / G(\mathfrak{P}).$$

Write an $\omega \in \mathbf{Z}[G]_0$ as

(1.4)
$$\omega = \sum_{t \in G} a(t)t.$$

Since a = a(t) is a class function on G, its Fourier expansion makes sense: (1.5) $a = \sum_{\chi \in Irr(G)} a_{\chi}\chi$

where Irr(G) denotes the set of *C*-irreducible characters of *G*. The Fourier coefficients are

As for the statement, see the last line of this paper before Acknowledgement.