61. A Note on Jacobi Sums. III

By Takashi OnO
Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

This is a continuation of [1] which will be referred to as (II). In this paper, we shall reprove Theorem 2 of (II) ${ }^{1)}$ in a setting which suggests us a direction in further studies inspired by Stickelberger's theorem. We follow, in general, notation and conventions of (II). This paper is logically independent of (II).
§1. Quotient space $H\left(\mathfrak{B}^{\omega}\right)$. Let K / k be a finite Galois extension of number fields K, k of finite degree over \boldsymbol{Q} with the Galois group $G=G(K / k)$. Let Π be the set of prime ideals \mathfrak{B} of K unramified for K / k. We shall call a map $\varphi: \Pi \rightarrow K^{\times}$a function of type (S) if it satisfies the following conditions:
(S.1) $\varphi\left(\mathfrak{P}^{s}\right)=\varphi(\mathfrak{P})^{s}$ for all $s \in G$,
(S.2) there is an $\omega_{\varphi} \in \boldsymbol{Z}[G]$ such that $(\varphi(\mathfrak{B}))=\mathfrak{B}^{\omega_{\varphi}}$ for all $\mathfrak{B} \in \Pi$.

Using a prime \mathfrak{p} of k which splits completely in K, one sees that ω_{φ} is well-defined by φ and that ω_{φ} belongs to the center $\boldsymbol{Z}[G]_{0}$ of $\boldsymbol{Z}[G]$. If we denote by Φ the set of all maps φ of type (S), then Φ becomes a multiplicative group in an obvious way and the map $\varphi \rightarrow \omega_{\varphi}$ becomes a homomorphism of Φ into the additive group of $\boldsymbol{Z}[G]_{0}$ whose kernel consists of all maps $\varphi: \Pi \rightarrow \mathfrak{o}_{K}^{\times}$, the group of units of o_{K}.

As in (II), for $\varphi \in \Phi, \omega \in \boldsymbol{Z}[G]$, we put

$$
\begin{align*}
& G(\varphi(\mathfrak{P}))=\left\{s \in G ; \varphi(\mathfrak{P})^{s}=\varphi(\mathfrak{P})\right\}, \\
& \left.G^{*}(\varphi(\mathfrak{B}))=\{s \in G ;(\mathfrak{P}))^{s}=(\varphi(\mathfrak{P}))\right\}, \tag{1.1}\\
& G\left(\mathfrak{P}^{\omega}\right)=\left\{s \in G ;\left(\mathfrak{P}^{\omega}\right)^{s}=\mathfrak{P}^{\omega}\right\} .
\end{align*}
$$

Note that we use the convention $\mathfrak{B}^{s t}=\left(\mathfrak{B}^{t}\right)^{s}, s, t \in G$. Since $\omega_{\varphi} \in \boldsymbol{Z}[G]_{0}$ we have, by (S.2),

$$
\begin{equation*}
G\left(\mathfrak{B}^{\omega_{\varphi}}\right)=G^{*}(\varphi(\mathfrak{P})) \supset G(\varphi(\mathfrak{F})) \supset G(\mathfrak{P}) \tag{1.2}
\end{equation*}
$$

where $G(\mathfrak{P})$ means the decomposition group of \mathfrak{B}, i.e., $G(\mathfrak{P})=G\left(\mathfrak{P}^{1}\right), 1 \in$ $\boldsymbol{Z}[G]$. For an $\omega \in \boldsymbol{Z}[G]_{0}$, we shall put

$$
\begin{equation*}
H\left(\mathfrak{B}^{\omega}\right)=G\left(\mathfrak{P}^{\omega}\right) / G(\mathfrak{P}) \tag{1.3}
\end{equation*}
$$

Write an $\omega \in \boldsymbol{Z}[G]_{0}$ as

$$
\begin{equation*}
\omega=\sum_{t \in G} a(t) t \tag{1.4}
\end{equation*}
$$

Since $a=a(t)$ is a class function on G, its Fourier expansion makes sense:

$$
\begin{equation*}
a=\sum_{\chi \in I r r(G)} a_{\chi} \chi \tag{1.5}
\end{equation*}
$$

where $\operatorname{Irr}(G)$ denotes the set of \boldsymbol{C}-irreducible characters of G. The Fourier coefficients are

[^0]
[^0]: ${ }^{1)}$ As for the statement, see the last line of this paper before Acknowledgement.

