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1. Discrete decomposability with respect to symmetric pairs. Let G be a
real reductive linear Lie group and the unitary dual of G. Suppose G’ is a
reductive subgroup of G. The representation zr is called G’-aclmissible
if the restriction ZrlG, splits into a discrete sum of irreducible representations
of G’ with finite multiplicity. It may well happen that the restriction :riG, con-
tains continuous spectrum (even worse, with infinite multiplicity) which is
sometimes difficult to analyse. Thus, the notion of admissibility is empha-
sized here to single out a very nice pair (re, G’) for the study of the restric-
tion :ZIG,. Here are famous examples where zr is G’-admissible.
(1.1)(a) If G’ is a maximal compact subgroup of G, then any zt G is
G’-admissible (Harish-Chandra). An explicit decompostition formula is
known as a generalized Blattter formula if zr A, (/) (attached to elliptic
orbits in the sense of orbit method; see [2], [9] Theorem 6.3.12).
(1.1)(b) A restriction formula of a holomorphic discrete series G’ is found
with respect to some reductive subgroups G’ (eg. [7], [4]). Also the restriction
of the Segal-Shale-Weil representation zr with respect to dual reductive pair
with one factor compact is intensively studied (Howe’s correspondence).

We remark that G’ is compact in the case (1.1)(a), while r G is a

highest weight module in (1.1)(b). On the other hand, in some special settings,
explicit restriction formulas have been found where zr G does not belong
to unitary highest weight modules but is G’-admissible for noncompact G’ c G,
such as (G, G’)’ (SO(4,2), SO(4,1))and r is non-holomorphic discrete
series ([5] Example 3.4.2), (G, G’)= (SO(4,3), G2(R)) and zr is in some
family of derived functor modules (Kobayashi-Uzawa, 1989 at Math. Soc.
Japan), and a recent work of Howe and Tan [3]. See also an explicit formula
of the discrete part of ZrlG, for (G, G’) (SO(3,2), SO(2,2)) and zr non-
holomorphic discrete series in [1] in the non-admissible case. In this section
we find a more general but still good framework to study the restriction

Let 0 be a Cartan involution of G. Write o for the Lie algebra of G,- to )C for its complexification, K G for the fixed point group of 0,
and 1o fo 4-Po for the corresponding Cartan decomposition. Take a fun-
damental Cartan subalgebra [9o(C Io). Then to o ffl Io is a Cartan sub-
algebra of fo. A 0-stable parabolic subalgebra q =--q(,) --[(/) + u(/)
and a Levi part L(/) c G are given by an elliptic element / /-- 1 (t)*
(see [9] Definition 5.2.1). Let Rq (j" E N) be the Zuckerman’s derived
functor from the category of metaplectic (I, (L, K))-modules to that of
(1, K)-modules. In this paper, we follow the normalization in [10] Definition


