57. On a Conjecture on Pythagorean Numbers

By Kei Takakuwa and You Asaeda
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, M. J. A., Sept. 13, 1993)

L. Jeśmanowicz [1] conjectured that if u, v, w are Pythagorean numbers, i.e. positive integers with $(u, v)=(v, w)=(w, u)=1$ satisfying $u^{2}+v^{2}$ $=w^{2}$, then the diophantine equation on $l, m, n \in N$

$$
u^{l}+v^{m}=w^{n}
$$

has the only solution $(l, m, n)=(2,2,2)$. (Cf. [2].) Since u, v, w are Pythagorean numbers, we have

$$
u=x^{2}-y^{2}, v=2 x y, w=x^{2}+y^{2}
$$

where $x, y \in \boldsymbol{N}$, with $(x, y)=1, x>y, x \not \equiv y(\bmod 2)$.
We shall consider here the following diophantine equation on $l, m, n \in \boldsymbol{N}$

$$
\begin{equation*}
\left(4 a^{2}-y^{2}\right)^{l}+(4 a y)^{m}=\left(4 a^{2}+y^{2}\right)^{n} \tag{1}
\end{equation*}
$$

where $a, y \in N$ with $(a, y)=1,2 a>y, y \equiv 3(\bmod 4)$, whence l is even, which is easily seen considering (1) mod 4 .

Proposition 1. If a is odd, then $m \equiv n(\bmod 2)$ and $m \neq 1 \Leftrightarrow n$ is even.
Proof. From (1) we have $(4 a y)^{m} \equiv\left(2 y^{2}\right)^{n}\left(\bmod 4 a^{2}-y^{2}\right)$. By the assumptions on a, y,

$$
\left(\frac{2^{2 m} a^{m} y^{m}}{4 a^{2}-y^{2}}\right)=(-1)^{m}=\left(\frac{2^{n} y^{2 n}}{4 a^{2}-y^{2}}\right)=(-1)^{n}
$$

where $\left(\frac{*}{*}\right)$ is the Jacobi symbol. Hence $m \equiv n(\bmod 2)$. If n is even, $m \neq 1$. If n is odd, $\left(4 a^{2}+y^{2}\right)^{n} \equiv 5(\bmod 8)$ and $\left(4 a^{2}-y^{2}\right)^{l} \equiv 1(\bmod 8)$. Then we have $(4 a y)^{m} \equiv 4(\bmod 8)$ from (1), hence $m=1$.

Proposition 2. If a is even, then m is even.
Proof. From (1) we have $(4 a y)^{m} \equiv\left(2 y^{2}\right)^{n}\left(\bmod 4 a^{2}-y^{2}\right)$. By the assumptions on a, y,

$$
\left(\frac{2^{2 m} a^{m} y^{m}}{4 a^{2}-y^{2}}\right)=(-1)^{m}=\left(\frac{2^{n} y^{2 n}}{4 a^{2}-y^{2}}\right)=1
$$

Hence m is even.
Proposition 3. If a is even and $y \equiv 3(\bmod 8)$, then n is even.
Proof. By Prop. 2, m is even. From (1) we have $1 \equiv 9^{n}(\bmod 16)$ Hence n is even.

Theorem 1. Let a be odd, $y=p$ odd prime, and $p \equiv 3(\bmod 4)$ in (1). If $m \neq 1$, then $(l, m, n)=(2,2,2)$.

Proof. By Prop.1, n is even. Put $l=2 l^{\prime}, n=2 n^{\prime}$, and $\left(4 a^{2}+p^{2}\right)^{n^{\prime}}+$ $\left(4 a^{2}-p^{2}\right)^{l^{\prime}}=A,\left(4 a^{2}+p^{2}\right)^{n^{\prime}}-\left(4 a^{2}-p^{2}\right)^{l^{\prime}}=B . \quad$ Clearly $\quad(A, B)=2$. From (1) we have

$$
\begin{equation*}
2^{2 m} a^{m} p^{m}=A B \tag{2}
\end{equation*}
$$

Assume $A \equiv 0(\bmod p)$, then we have $(2 a)^{2 n^{\prime}}+(2 a)^{2 l^{\prime}} \equiv 0(\bmod p)$, so

