55. A Remark on the Limiting Absorption Method for Dirac Operators^{*)}

By Osanobu YAMADA

Department of Mathematics, Ritsumeikan University (Communicated by Heisuke HIRONAKA, M. J. A., Sept. 13, 1993)

1. Introduction and result. Let us consider the Dirac operator

$$H = \sum_{j=1}^{3} \alpha_j D_j + \beta + q(x), x \in \mathbf{R}^3, D_j = -i \frac{\partial}{\partial x_j},$$

in the Hilbert space $[L^{2}(\mathbf{R}^{3})]^{4}$, where α_{j} and $\alpha_{4} = \beta$ are 4×4 Hermitian constant matrices satisfying the anti-commutation property

$$\alpha_i \alpha_k + \alpha_k \alpha_i = 2\delta_{ik} I \quad (1 \le j, k \le 4),$$

and q(x) is a continuous real valued function which decays at infinity, where I is the unit 4×4 matrix. For a real number t, let $L_t^2(\mathbf{R}^N)$ be the weighted Hilbert space with the norm

$$\|f\|_{t} = \left\{ \int_{\mathbf{R}^{N}} (1+|x|^{2})^{t} |f(x)|^{2} dx \right\}^{1/2} < \infty$$

and let X_t be a the weighted Hilbert space defined by $[L_t^2(\mathbf{R}^3)]^4$ (,where we use also the same notation $\| \|_t$ as the norm). One can see by the limiting absorption method under appropriate conditions on q(x) that

for any
$$t > \frac{1}{2}$$
 and any $f \in X_t$ the strong limit of the resolvent
 $R(\lambda \pm i \ 0)f = s - \lim_{\varepsilon \to +0} (H - \lambda \mp i\varepsilon)^{-1} f \quad in X_{-t}$

exists for any real λ such that $|\lambda| > 1$ (see, e.g., Yamada [6]).

For Schrödinger operators $h = -\Delta + q(x)$ in \mathbb{R}^N there are also many works on the limiting absorption method, which shows that

for any
$$t > \frac{1}{2}$$
 and any $f \in L^2_t(\mathbf{R}^N)$ the strong limit of the resolvent
 $r(\lambda \pm i \ 0)f = s - \lim_{\epsilon \to +0} (h - \lambda \mp i\epsilon)^{-1} f \text{ in } L^2_{-t}(\mathbf{R}^N)$

exists for any $\lambda > 0$.

Let us denote the operator norm of $r(\lambda \pm i \ 0)$ $(R(\lambda \pm i \ 0))$ as a bounded operator on L_t^2 to L_{-t}^2 (on X_t to X_{-t}) by $||r(\lambda \pm i \ 0)||_{t,-t}$ ($||R(\lambda \pm i \ 0)||_{t,-t}$).

It is well known that the operator norm $|| r(\lambda \pm i 0) ||_{t,-t}$ for each $t > \frac{1}{2}$ satisfies

$$\| r(\lambda \pm i 0) \|_{t,-t} = O(\lambda^{-1/2}) \text{ as } \lambda \to \infty$$

for Schrödinger operators with a large class of potentials (see, e.g., Saito [3],

^{*)} This work is partially supported by Grant-in-Aid for Scientific Research No. 04640199, Ministry of Education, Science and Culture, Japan Government.