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In our previous paper[2], for the fundamental unit sp of the real quadra-
tic field (-) of prime discriminant, we showed that there exist exactly 30
real quadratic fields O(v-) of class number one satisfying sp < 2p with one
more possible exception of prime discriminant p.

On the other hand, in the paper [3], for a positive square-free integer D
we defined new D-invariants too, no, and using them we provided some esti-
mate formulas of the class number and the fundamental unit of the real
qnadratic field Q(v/).

In this paper, using one of those estimate formulas of the class number
we shall provide a kind of improvement of Theorem 2 in [2], which relates to

1)class number one problem for real quadratic fields.
For any positive square-free integer D, we denote by hD and by

s (t + u /)/2 (> 1)
the class number and the fundamental unit of the real quadratic field
Q(v) respectively, and put

D_ {D: positive square-free integer with NSo 1}.
Our main purpose of this paper is to prove the following theorem:
Theorem. For arbitrarily chosen and fixed natural number h and real

number c greater than 2, there exists only a finite number of real quadratic
fields Q(v/D) (D D_) such that

(1) so <D(eD/- 1) or to <D(ev/- 1),
and

(2) ho - h0.

To prove this theorem, we need several lemmas.
Lemmal. For anyD > 5 inD_,

[to [so [u9/tv]
holds, where [x] means the greatest integer less than or equal to x.

For the proof, see Theorems 2.1, 2.3 and their proofs in [3].
Here, if we put

m [t/D] (= [s/D])
the same as in [3], then we have easily the following lemma

Lemma2. Ifs_ 11.2 andD_ e
s
for D in D_, then

(s--2)/(2s)

ho > 0.3275"s- "D /{log D(mo + 1)}
holds with one possible exception of D.

For the proof, see Theorem 2.3 in [3].

Cf. H. Yokoi [1].


