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1. Introduction. We consider the following continuous problem in a
Hibert space X :
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with a positive definite selfadjoint operator A, and its fully discrete approxi-
mate problem in a given finite dimensional subspace X, of X obtained by
Newmark’s method as follows:
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with a bounded positive definite selfadjoint operator _A,,, where 8 and 0 are
fixed nonnegative numbers independent of # € (0, 4], and 7 is a positive
number. For the derivation of the problem (E,.), we followed Raviart and
Thomas [4].
Our motivation of this study is to analyze the finite element approxima-
tion of the linear water wave equation:
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where 092 = I', U I'} with mutually disjoint portions Iy and I of the bound-
ary 082 of the water region £ at rest. The portion I, is the water surface at
rest, and I is the rigid wall. The problem (LWW) describes the motion of
the water in a vessel on the ground of the Earth under the assumption of in-
finitesimal amplitude, and whose derivation from the fundamental laws of
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