49. Singular Variation of Non-linear Eigenvalues. II

By Tatsuzo OSAWA^{*}) and Shin OZAWA^{**})

(Communicated by Kiyosi ITÔ, M. J. A., Sept. 13, 1993)

Let M be a bounded domain in \mathbb{R}^3 with smooth boundary ∂M . Let w be a fixed point in M. Removing an open ball $B(\varepsilon; w)$ of radius ε with the center w from M, we get $M_{\varepsilon} = M \setminus \overline{B(\varepsilon; w)}$. For p > 1 and $\varepsilon > 0$ let $\lambda(\varepsilon)$ denote the positive number defined by

$$(1.1)_{\varepsilon} \qquad \lambda(\varepsilon) = \inf_{\substack{X_{\varepsilon} \\ X_{\varepsilon}}} \int_{M_{\varepsilon}} |\nabla u|^{2} dx,$$

where $X_{\varepsilon} = \{ u \in H_{o}^{1}(M_{\varepsilon}) : || u ||_{L^{p+1}(M_{\varepsilon})} = 1, u \ge 0 \}.$

We consider the asymptotic behaviour of $\lambda(\varepsilon)$ as ε tends to 0. It is well known that there exists at least one positive solution u_{ε} which attains $(1.1)_{\varepsilon}$ in case of $p \in (1, 5)$. We note that the minimizer satisfies $-\Delta u_{\varepsilon} = \lambda(\varepsilon) u_{\varepsilon}^{p}$ in M_{ε} and $u_{\varepsilon} = 0$ on ∂M_{ε} . We put

$$\lambda = \inf_{X} \int_{M} |\nabla u|^{2} dx,$$

where $X = \{ u \in H_o^1(M) : || u ||_{L^{p+1}(M)} = 1, u \ge 0 \}.$

In this paper we show the following

Theorem 1. Assume that the positive solution of $-\Delta u = \lambda u^{\flat}$ in Munder the Dirichlet condition on ∂M is unique. Then, there exists a constant $p^*(M) > 1$ such that for any $p \in (1, p^*(M))$ we have (1.2) $\lambda(\varepsilon) - \lambda = 4\pi\varepsilon u(w)^2 + o(\varepsilon)$

as ε tends to zero.

Example. M = B(r), the ball of radius r, satisfies the assumption of Theorem 1, as is seen in Gidas-Ni-Nirenberg [1, Theorem 1 and p. 224, 2.9]. See also Dancer [2, Theorem 5].

Theorem 1 follows from the following Theorems 2 and 3.

Theorem 2 (Ozawa [5]). Fix $p \in (1, 5)$. Assume that the positive solution of $-\Delta u = \lambda u^p$ in M under the Dirichlet condition on ∂M is unique. Moreover assume that $\text{Ker}(A + \lambda p u^{p-1}) = \{0\}$, where we denote A by the linear operator $H^2(M) \cap H_o^1(M) \ni u \to \Delta u \in L^2(M)$. Then, (1.2) holds.

Theorem 3. Assume that the positive solution of $-\Delta u = \lambda u^{p}$ in M under the Dirichlet condition on ∂M is unique. Then, there exists $p^{*}(M) > 1$ such that $\operatorname{Ker}(A + \lambda p u^{p-1}) = \{0\}$ holds for $p \in (1, p^{*}(M))$. We consider the eigenvalue problem (1.3).

(1.3) $-\Delta \varphi = \mu u^{p-1} \varphi$ in M

$$\varphi = 0 \qquad \text{in } \partial M$$

 $\varphi = 0$ in ∂M . Let $\mu_1^{(p)}$ ($\mu_2^{(p)}$, respectively) be the first (the second, respectively) eigenvalue of (1.3). Let $\varphi_1^{(p)}$ be the first eigenfunction of (1.3) which is normalized as

^{*)} Integrated Information Network System Group, Fujitsu Limited.

^{**)} Department of Mathematics, Faculty of Science, Tokyo Institute of Technology.