49. Singular Variation of Non-linear Eigenvalues. II

By Tatsuzo OSAWA*) and Shin Ozawa **)

(Communicated by Kiyosi ITÔ, M. J. A., Sept. 13, 1993)

Let M be a bounded domain in R^{3} with smooth boundary ∂M. Let w be a fixed point in M. Removing an open ball $B(\varepsilon ; w)$ of radius ε with the center w from M, we get $M_{\varepsilon}=M \backslash \overline{B(\varepsilon ; w)}$. For $p>1$ and $\varepsilon>0$ let $\lambda(\varepsilon)$ denote the positive number defined by

$$
\begin{equation*}
\lambda(\varepsilon)=\inf _{\dot{x}_{\varepsilon}} \int_{M_{\varepsilon}}|\nabla u|^{2} d x \tag{1.1}
\end{equation*}
$$

where $X_{\varepsilon}=\left\{u \in H_{o}^{1}\left(M_{\varepsilon}\right):\|u\|_{L^{p+1}\left(M_{\epsilon}\right)}^{X_{\varepsilon}}=1, u \geq 0\right\}$.
We consider the asymptotic behaviour of $\lambda(\varepsilon)$ as ε tends to 0 . It is well known that there exists at least one positive solution u_{ε} which attains (1.1) $)_{\varepsilon}$ in case of $p \in(1,5)$. We note that the minimizer satisfies $-\Delta u_{\varepsilon}=\lambda(\varepsilon) u_{\varepsilon}^{p}$ in M_{ε} and $u_{\varepsilon}=0$ on ∂M_{ε}. We put

$$
\lambda=\inf _{X} \int_{M}|\nabla u|^{2} d x
$$

where $X=\left\{u \in H_{o}^{1}(M):\|u\|_{L^{p+1}(M)}=1, u \geq 0\right\}$.
In this paper we show the following
Theorem 1. Assume that the positive solution of $-\Delta u=\lambda u^{p}$ in M under the Dirichlet condition on ∂M is unique. Then, there exists a constant $p^{*}(M)>1$ such that for any $p \in\left(1, p^{*}(M)\right)$ we have

$$
\begin{equation*}
\lambda(\varepsilon)-\lambda=4 \pi \varepsilon u(w)^{2}+o(\varepsilon) \tag{1.2}
\end{equation*}
$$

as ε tends to zero.
Example. $\quad M=B(r)$, the ball of radius r, satisfies the assumption of Theorem 1, as is seen in Gidas-Ni-Nirenberg [1, Theorem 1 and p. 224, 2.9]. See also Dancer [2, Theorem 5].

Theorem 1 follows from the following Theorems 2 and 3.
Theorem 2 (Ozawa [5]). Fix $p \in(1,5)$. Assume that the positive solution of $-\Delta u=\lambda u^{p}$ in M under the Dirichlet condition on ∂M is unique. Moreover assume that $\operatorname{Ker}\left(A+\lambda p u^{p-1}\right)=\{0\}$, where we denote A by the linear operator $H^{2}(M) \cap H_{o}^{1}(M) \ni u \rightarrow \Delta u \in L^{2}(M)$. Then, (1.2) holds.

Theorem 3. Assume that the positive solution of $-\Delta u=\lambda u^{p}$ in M under the Dirichlet condition on ∂M is unique. Then, there exists $p^{*}(M)>1$ such that $\operatorname{Ker}\left(A+\lambda p u^{p-1}\right)=\{0\}$ holds for $p \in\left(1, p^{*}(M)\right)$.
We consider the eigenvalue problem (1.3).

$$
\begin{array}{ccc}
-\Delta \varphi=\mu u^{p-1} \varphi & & \text { in } \quad M \tag{1.3}\\
\varphi=0 & & \text { in } \partial M .
\end{array}
$$

Let $\mu_{1}^{(p)}\left(\mu_{2}^{(p)}\right.$, respectively) be the first (the second, respectively) eigenvalue of (1.3). Let $\varphi_{1}^{(p)}$ be the first eigenfunction of (1.3) which is normalized as

[^0]
[^0]: *) Integrated Information Network System Group, Fujitsu Limited.
 **) Department of Mathematics, Faculty of Science, Tokyo Institute of Technology.

