39. On the Measure on the Set of Positive Integers

By Kōsaku OKUTSU

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., June 8, 1993)

R. C. Buck [1] constructed as follows a measure μ on the set $N = \{0,1,2,\ldots\}$ of positive integers. For an arithmetic progression $A = \{an + b \mid n \in N\} = aN + b$, $a, b \in N$, $a \neq 0$, put $\mu(A) = a^{-1}$. Let A be the class of all arithmetic progressions and B the class of subsets of N which are finite disjoint unions of elements of A; thus if $B \in B$, then $B = \sum_{i=1}^k A_i$ (disjoint union) $A_i \in A$, $i = 1,2,\ldots,k$. For such B, put $\mu(B) = \sum_{i=1}^k \mu(A_i)$. For any subset C of N, $\mu(C)$ is defined to be inf $\mu(B)$, $B \in B$ and $C \subset B \cup F$, where F is a finite subset of N.

On the other hand, we have another measure ν on N, used by J.-L. Mauclaire [2] to obtain various results. Let P denote the set of all prime numbers. For $p \in P$, the additive group \mathbf{Z}_p of p-adic integers with p-adic topology is a compact abelian group, which has therefore the Haar measure ν_p with $\nu_p(\mathbf{Z}_p) = 1$. The product group $G = \prod_{p \in P} \mathbf{Z}_p$ with the product topology is again a compact abelian group with product measure $\nu = \prod_{p \in P} \nu_p$. \mathbf{Z} is considered as a dense subgroup in G, and N as an open and closed subset of \mathbf{Z} which is also dense in G.

J.-L. Mauclaire [3] discussed the relationship between μ and ν using Riemann-Stieltjes integration. In this note, we shall show that this relationship can be directly clarified using only topological considerations.

Remark. The above introduced notations A, B, μ , ν , ν_p will be used throughout this note in the same meanings. Let us recall that $U_p(x,e)=x+p^eZ_p$, $x\in Z_p$, $e\in N$, constitute an open basis of Z_p and $V_S(U_p(x_p,e_p))=\Pi_{p\in S}U_p(x_p,e_p)\times\Pi_{q\in P-S}Z_q$ where S runs over the finite subset of P, $x_p\in Z_p$, $e_p\in N$, an open basis of G. For a subset M of G, \overline{M} will denote the closure of M in G. Recall, furthermore, that $\nu_p(U_p(x,e))=\nu_p(x+p^eZ_p)$ dose not depend on x and is equal to p^{-e} , so that $\nu(V_S(U_p(x_p,e_p)))=\Pi_{p\in S}p^{-e_p}$.

Our main result will follow from the following two propositions.

Proposition 1. For any open and closed non-empty subset O in G, $O \cap N$ belongs to B.

Proof. O is a union of sets of form $V_S(U_p(x_p, e_p))$, because O is open. As G is compact, O is also compact. So O is a finite union of $V_S(U_p(x_p, e_p))$. Now $V_S(U_p(x_p, e_p)) \cap \mathbf{N} = a\mathbf{N} + b \in \mathbf{A}$ where $a = \prod_{p \in P} p^{e_p}$ and $b \equiv x_p \mod p^{e_p}$, so that $O \cap \mathbf{N}$ is an element of \mathbf{B} .

Proposition 2. For $B \in B$, \overline{B} is an open and closed subset of G, and $\mu(B) = \nu(\overline{B})$.

Proof. For $A = aN + b \in A$, we set $a = \prod_{b \in P} p^{e_b}$ where S is a finite