3. Generalization of a Theorem of Manin-Shafarevich*)

By Tetsuji Shioda

Department of Mathematics, Rikkyo University (Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1993)

Let us fix some notation before stating the results. Let m be a positive integer with $m \ge 3$. Let $\{\Gamma_t \mid t \in \mathbf{P}^1\}$ be a linear pencil of curves of degree m in a projective plane \mathbf{P}^2 defined over an algebraically closed field k of arbitrary characteristic. Assume the following conditions:

(A1) Every member Γ_t is irreducible and general members are nonsingular.

(A2) The m^2 base points of the pencil are distinct. We denote them by $P_i(i = 0, 1, ..., m^2 - 1)$.

Then the generic member $\Gamma = \Gamma_t$ (for t generic over k) is a nonsingular curve of genus g = (m-1)(m-2)/2 defined over the rational function field K = k(t).

Let J denote the Jacobian variety of Γ/K and J(K) the group of its K-rational points. Each P_i defines a K-rational point of Γ . By choosing one of P_i , say P_0 , we have a natural embedding of Γ into J sending P_0 to the origin of J. Thus we have

$$P_1,\ldots,P_{m^2-1} \in \Gamma(K) \subset J(K).$$

For m = 3, $\{\Gamma_t\}$ is a pencil of cubic curves and $J = \Gamma$ is an elliptic curve, say E, over K. Inspired by Shafarevich, Manin proved that under (A1) and (A2) the 8 points P_1, \ldots, P_8 are independent and generate a subgroup of index 3 in the Mordell-Weil group E(K) (see [5], Th.6 and [6], Ch.IV, 26.4). Recently we have given a simple proof of this result based on the theory of Mordell-Weil lattices, where E(K) is endowed with the structure of the root lattice E_8 (see [7], Th. 10.11).

More recently we have extended the notion of Mordell-Weil lattices to higher genus case [9]. As an application, we can prove the following result generalizing the above theorem of Manin-Shafarevich to arbitrary $m \geq 3$.

Theorem 1. The notation being as above, assume the conditions (A1) and (A2). Then the group of K-rational points J(K) of the Jacobian variety J is a torsionfree abelian group of rank $r = m^2 - 1$, and the r points $P_i (1 \le i \le r)$ are independent and generate a subgroup of index m in J(K).

This is an immediate consequence of Theorem 2 below formulated in terms of Mordell-Weil lattices. By blowing up the m^2 base points from P^2 , we obtain a nonsingular rational surface S and a morphism

$$f: S \to \mathbf{P}^1$$

such that $f^{-1}(t) \simeq \Gamma_t \ (t \in \mathbf{P}^1)$. In particular, Γ/K is the generic fibre of this genus g fibration f. The exceptional curves (P_i) in S arising from

^{*)} Dedicated to I. R. Shafarevich for his 70th birthday.