By Ryoichi KOBAYASHI

Department of Mathematics, Nagoya University (Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1993)

In [3] (cf. [9]), Bando and the author proved that there exists a complete Ricci-flat Kähler metric on the complement of a smooth hypersurface D of a Fano manifold X if (X, D) satisfies the conditions: (i) $c_1(X) = \alpha[D]$ with $\alpha > 1$ and (ii) D admits a Kähler-Einstein metric. This result and its proof find some applications in [2], [5], [6] and [11] to problems differential geometry. But we find this existence theorem quite restrictive if we try to apply it to problems in complex algebraic geometry. In this note we announce a general existence theorem for complete Ricci-flat Kähler metrics on certain class of affine algebraic manifolds, which generalizes the results in [3] and [9] by removing the Kähler-Einstein condition at infinity. Details and an application will appear elsewhere ([7]).

Theorem 1. Let X be a Fano manifold, i.e., X has ample anticanonical bundle. Let D be a smooth connected hypersurface in X such that $c_1(X) = \alpha[D]$ with $\alpha > 1$. Then there exists a complete Ricci-flat Kähler metric on X - D.

The asymptotic bahavior of the resulting Ricci-flat Kähler metric may be described as follows. As $c_1(X) > 0$ and $c_1(X) = \alpha[D]$, there exists a Hermitian metric $\|\cdot\|$ on the line bundle $O_X(D)$ such that

$$\theta = \sqrt{-1} \,\partial \bar{\partial} t \,\left(t = \log \frac{1}{\|\sigma\|^2} \right)$$

defines a Kähler metric on X, where σ is a holomorphic section of $O_X(D)$ vanishing along D. Then

$$\omega = \sqrt{-1} \partial \bar{\partial} \frac{n}{\alpha - 1} \left(\frac{1}{\|\sigma\|^2} \right)^{\frac{\alpha - 1}{n}} \\ = \left(\frac{1}{\|\sigma\|^2} \right)^{\frac{\alpha - 1}{n}} \left(\theta + \frac{\alpha - 1}{n} \sqrt{-1} \partial t \wedge \bar{\partial} t \right)$$

turns out to be a complete Kähler metric on X - D. The resulting Ricci-flat Kähler metric on X - D has a Kähler potential \tilde{u} of the form

$$\tilde{u} = \frac{n}{\alpha - 1} \left(\frac{1}{\|\sigma\|^2} \right)^{\frac{\alpha - 1}{n}} + u$$

where u satisfies the *a priori* growth (decay, if $k \ge 3$) estimates:

$$\| \nabla_{\omega}^{h} u \| \leq C_{k} \left\{ \left(\frac{1}{\|\sigma\|^{2}} \right)^{\frac{\alpha-1}{2n}} \right\}^{2-k}$$

for $0 \le \forall k \in \mathbb{Z}$, where ∇_{ω} denotes the Levi-Civita connection of ω . In particular, u is at most of quadratic growth relative to the distance function