24. Deformation Quantization of Poisson Algebras

By Hideki OMORI,*) Yoshiaki MAEDA,**) and Akira YOSHIOKA*)

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1992)

§ 0. Introduction. Let M be a C^{∞} Poisson manifold, and $C^{\infty}(M)$ the set of all C-valued C^{∞} functions on M. In what follows, we put $\alpha = C^{\infty}(M)$ for simplicity. By definition of Poisson manifolds, there exists a bilinear map $\{, \}$: $\alpha \times \alpha \rightarrow \alpha$, called the *Poisson bracket*, with the following properties: For any $f, g, h \in \alpha$,

$$\begin{cases} \{f,g\} = -\{g,f\}, & \{f,g \cdot h\} = \{f,g\} \cdot h + g \cdot \{f,h\}, \\ \{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} = 0. \end{cases}$$

The algebra $(a, \{,\})$ is called the *Poisson algebra*.

We introduce the notion of the *deformation quantization* for the Poisson algebra $(a, \{ , \})$ as follows: Let $a[\![\nu]\!]$ be the direct product space $\prod_{m=0}^{\infty} \nu^m a$, where ν is a formal parameter. Consider an associative product $*: a[\![\nu]\!] \times a[\![\nu]\!] \rightarrow a[\![\nu]\!]$ such that ν is a center of $(a[\![\nu]\!], *)$ and 1 is the identity. Set for any $f, g \in a, f*g = \sum_{n=0}^{\infty} \nu^n \pi_n(f, g)$ according to the decomposition of f*g.

Let $\hat{a}_k = \mathfrak{a}[\![\nu]\!]/\nu^{k+1}\mathfrak{a}[\![\nu]\!] \equiv \mathfrak{a} \oplus \nu\mathfrak{a} \oplus \cdots \oplus \nu^k \mathfrak{a}$. Then an associative product * can be considered on \hat{a}_k by setting $\nu^{k+1} = 0$. We denote this algebra by $(\hat{a}_k, \{\pi_m\}_{m=0}^k)$.

Definition. (i) For $k \ge 2$, an associative algebra $(\hat{\alpha}_k, \{\pi_m\}_{m=0}^k)$ is called a deformation quantization of order k of $(\alpha, \{,\})$, if the following conditions are satisfied: For any $f, g \in \alpha$.

(a) $\pi_0(f,g) = f \cdot g \text{ and } \pi_1(f,g) = -\frac{1}{2} \{f,g\}.$

(b) π_m is a bidifferential operator and $\pi_m(f,g) = (-1)^m \pi_m(g,f), 0 \le m \le k$.

(ii) $(\mathfrak{a}[\nu], *)$ is called a *deformation quantization* of $(\mathfrak{a}, \{,\})$, if $(\hat{\mathfrak{a}}_k, \{\pi_m\}_{m=0}^k)$ is a deformation quantization of order k of $(\mathfrak{a}, \{,\})$ for any k.

The main purpose of this paper is to study the obstructions for a deformation quantization $(\hat{a}_k, \{\pi_m\}_{m=0}^k)$ of order k to be extended to that of order k+1. The obstruction R_{k+1} is obtained as a deRham-Chevally 3-cocycle defined in the next section.

Our main theorem is stated as follows:

Main theorem. Suppose $(\hat{a}_k, \{\pi_m\}_{m=0}^k)$ is a deformation quantization of order k of $(a, \{,\})$. There exists a deformation quantization $(\hat{a}_{k+1}, \{\pi_m\}_{m=0}^{k+1})$ of order k+1 if and only if $R_{k+1}=0$.

^{*)} Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo.

^{**)} Department of Mathematics, Faculty of Science and Technology, Keio University.