22. Pre-special Unit Groups and Ideal Classes of $Q\left(\zeta_{p}\right)^{+}$

By Fumika Kurihara
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Shokichi Iyanaga, m. J. A., April 13, 1992)

Let m be a positive integer and $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$the maximal real subfield of the field of m-th roots of unity. Let E_{m} be the global unit group of $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$ and let \mathcal{C}_{m} be Karl Rubin's special unit group of $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$(see [4]). Then Rubin's main results in [4] implies the following:

Theorem (cf. Th 1.3 and Th 2.2 of [4]). If $\alpha: E_{m} \rightarrow Z\left[\operatorname{Gal}\left(Q\left(\zeta_{m}\right)^{+} / Q\right)\right]$ is any $\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{m}\right)^{+} / \boldsymbol{Q}\right)$-module map, then $4 \alpha\left(\mathcal{C}_{m}\right)$ annihilates the ideal class group of $\boldsymbol{Q}\left(\zeta_{m}\right)^{+}$.

When m is an odd prime p, our result (Th 3) gives a condition for $\alpha\left(\mathcal{C}_{m}\right)$ to be a "minimal" element that annihilates the ideal class group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$.

Let p be a fixed prime number and let $\mathcal{S}_{p}=\{l$; odd prime number such that $l \equiv \pm 1(\bmod p)\}, \mathcal{S}_{p}^{+}=\left\{l \in \mathcal{S}_{p} ; l \equiv 1(\bmod p)\right\}$. For any prime number l in \mathcal{S}_{p}, we denote by $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++}$the composite field of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$and $\boldsymbol{Q}\left(\zeta_{l}\right)^{+}$. We fix any prime ideal \mathfrak{l} of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$above l and we write \tilde{I} for the prime ideal of $\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++}$abover. Also we fix any generator σ of $G=\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{p}, \zeta_{l}\right)^{++} / \boldsymbol{Q}\left(\zeta_{l}\right)^{+}\right)$. Let $E_{p}, E_{p, l}$ be the group of global units of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}, \boldsymbol{Q}\left(\zeta_{p}, \zeta_{1}\right)^{++}$respectively. We define $\mathcal{E}_{p}(l)=\left\{\eta \in E_{p, l} ; N_{Q\left(\zeta_{p}, \zeta_{l}\right)++/ \boldsymbol{Q}\left(\xi_{p}\right)+}(\eta)=1\right\}, \mathcal{C}_{p}(l)=\left\{\varepsilon \in E_{p} ; \exists \eta \in \mathcal{E}_{p}(l)\right.$ such that $\left.\varepsilon^{2} \equiv \eta\left(\bmod \prod_{j=0}^{(p-3) / 2} \check{\tau}^{(j)}\right)\right\}$. We call $\mathcal{C}_{p}(l)$ the pre-l-special unit group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$, and we define the special unit group of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$by $\mathcal{C}_{p}=\left\{\varepsilon \in E_{p} ; \varepsilon \in \mathcal{C}_{p}(l)\right.$ for all but finitely many l in \mathcal{S}_{p} \} (see [4]).

We fix any sufficiently large integer M, and we put $\mathcal{S}_{p}^{(M)}=\left\{l \in \mathcal{S}_{p}^{+} ; l \equiv 1\right.$ $\left.\left(\bmod p^{M}\right)\right\}$. Let g_{p} be a primitive root modulo p such that $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{g_{p}}$, and for $i=0, \cdots,(p-3) / 2$, let $\varepsilon_{i}=2 /(p-1) \sum_{j=0}^{(p-3) / 2} \omega^{-2 i}\left(g_{p}^{j}\right) \sigma^{j}$ be the idempotents in $Z / p^{M} Z[G]$, where ω is the Teichmüller character. Then $E_{p} / E_{p}^{p^{M}}=\oplus_{i=1}^{(p-3) / 2}$ $\varepsilon_{i}\left(E_{p} / E_{p}^{p^{M}}\right)$. For each $i=1, \cdots,(p-3) / 2$, we take any basis η_{i} of $\varepsilon_{i}\left(E_{p} / E_{p}^{p^{M}}\right)$ and let $\alpha: E_{p} / E_{p}^{p^{M}} \rightarrow \boldsymbol{Z} / p^{m} Z[G]$ be a G-module map such that $\alpha\left(\eta_{i}\right)=\varepsilon_{i}$. We sometimes use the following condition for l.

Condition-L. Let l be a prime number in $\mathcal{S}_{p}^{(M)}$. There is a G-module map

$$
\varphi:\left(\boldsymbol{Z}\left[\zeta_{p}\right]^{+} / / \boldsymbol{Z}\left[\zeta_{p}\right]^{+}\right)^{\times} \otimes \boldsymbol{Z} / p^{M} \boldsymbol{Z} \rightarrow \boldsymbol{Z} / p^{M} \boldsymbol{Z}[G]
$$

such that the following diagram is commutative:

Here, $\boldsymbol{Z}\left[\zeta_{p}\right]^{+}$is the integer ring of $\boldsymbol{Q}\left(\zeta_{p}\right)^{+}$and ψ is the reduction map.

