22. Pre-special Unit Groups and Ideal Classes of $Q(\zeta_p)^+$

By Fumika Kurihara

Department of Mathematics, Tokyo Institute of Technology (Communicated by Shokichi Iyanaga, M. J. A., April 13, 1992)

Let m be a positive integer and $\mathbf{Q}(\zeta_m)^+$ the maximal real subfield of the field of m-th roots of unity. Let E_m be the global unit group of $\mathbf{Q}(\zeta_m)^+$ and let \mathcal{C}_m be Karl Rubin's special unit group of $\mathbf{Q}(\zeta_m)^+$ (see [4]). Then Rubin's main results in [4] implies the following:

Theorem (cf. Th 1.3 and Th 2.2 of [4]). If $\alpha: E_m \to \mathbb{Z}[\operatorname{Gal}(\mathbb{Q}(\zeta_m)^+/\mathbb{Q})]$ is any $\operatorname{Gal}(\mathbb{Q}(\zeta_m)^+/\mathbb{Q})$ -module map, then $4\alpha(\mathcal{C}_m)$ annihilates the ideal class group of $\mathbb{Q}(\zeta_m)^+$.

When m is an odd prime p, our result (Th 3) gives a condition for $\alpha(\mathcal{C}_m)$ to be a "minimal" element that annihilates the ideal class group of $Q(\zeta_p)^+$.

Let p be a fixed prime number and let $\mathcal{S}_p = \{l : \text{odd prime number such that } l \equiv \pm 1 \pmod{p}\}$, $\mathcal{S}_p^+ = \{l \in \mathcal{S}_p : l \equiv 1 \pmod{p}\}$. For any prime number l in \mathcal{S}_p , we denote by $\mathbf{Q}(\zeta_p, \zeta_l)^{++}$ the composite field of $\mathbf{Q}(\zeta_p)^+$ and $\mathbf{Q}(\zeta_l)^+$. We fix any prime ideal \mathfrak{l} of $\mathbf{Q}(\zeta_p)^+$ above l and we write $\tilde{\mathfrak{l}}$ for the prime ideal of $\mathbf{Q}(\zeta_p, \zeta_l)^{++}$ above l. Also we fix any generator σ of $G = \operatorname{Gal}(\mathbf{Q}(\zeta_p, \zeta_l)^{++}/\mathbf{Q}(\zeta_l)^+)$. Let E_p , $E_{p,l}$ be the group of global units of $\mathbf{Q}(\zeta_p)^+$, $\mathbf{Q}(\zeta_p, \zeta_l)^{++}$ respectively. We define $\mathcal{E}_p(l) = \{ \eta \in E_{p,l} : \mathcal{N}_{\mathbf{Q}(\zeta_p,\zeta_l)^{++}/\mathbf{Q}(\zeta_p)^+}(\eta) = 1 \}$, $\mathcal{C}_p(l) = \{ \varepsilon \in E_p : \exists \eta \in \mathcal{E}_p(l) \text{ such that } \varepsilon^2 \equiv \eta \pmod{\prod_{j=0}^{(p-3)/2} \tilde{\mathfrak{l}}^{\sigma l}} \}$. We call $\mathcal{C}_p(l)$ the pre-l-special unit group of $\mathbf{Q}(\zeta_p)^+$, and we define the special unit group of $\mathbf{Q}(\zeta_p)^+$ by $\mathcal{C}_p = \{ \varepsilon \in E_p : \varepsilon \in \mathcal{C}_p(l) \text{ for all but finitely many } l \text{ in } \mathcal{S}_p \}$ (see [4]).

We fix any sufficiently large integer M, and we put $\mathcal{S}_p^{(M)} = \{l \in \mathcal{S}_p^+; l \equiv 1 \pmod{p^M}\}$. Let g_p be a primitive root modulo p such that $\sigma(\zeta_p) = \zeta_p^{g_p}$, and for $i = 0, \cdots, (p-3)/2$, let $\varepsilon_i = 2/(p-1) \sum_{j=0}^{(p-3)/2} \omega^{-2i} (g_p^j) \sigma^j$ be the idempotents in $\mathbb{Z}/p^M \mathbb{Z}[G]$, where ω is the Teichmüller character. Then $E_p/E_p^{pM} = \bigoplus_{i=1}^{(p-3)/2} \varepsilon_i (E_p/E_p^{pM})$. For each $i = 1, \cdots, (p-3)/2$, we take any basis η_i of $\varepsilon_i (E_p/E_p^{pM})$ and let $\alpha : E_p/E_p^{pM} \to \mathbb{Z}/p^M \mathbb{Z}[G]$ be a G-module map such that $\alpha(\eta_i) = \varepsilon_i$. We sometimes use the following condition for l.

Condition-L. Let l be a prime number in $\mathcal{S}_p^{(M)}$. There is a G-module map

$$\varphi: (Z[\zeta_p]^+/lZ[\zeta_p]^+)^{\times} \otimes Z/p^{M}Z \rightarrow Z/p^{M}Z[G]$$

such that the following diagram is commutative:

$$E_{p}/E_{p}^{p^{M}} \xrightarrow{\alpha} Z/p^{M}Z[G]$$

$$\downarrow^{\psi} \qquad \varphi$$

$$(Z[\zeta_{p}]^{+}/lZ[\zeta_{p}]^{+}) \otimes Z/p^{M}Z$$

Here, $Z[\zeta_p]^+$ is the integer ring of $Q(\zeta_p)^+$ and ψ is the reduction map.