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1o We fix an odd prime p. Let k be a quadratic number field and ]
the Hilbert p-class field of k. Denote the p-primary parts of the ideal
class groups of k and of ] by Cl((k) and by CI()(]), respectively.

If the p-rank of Cl((k) is less than or equal to one, CI(’)(]) is trivial.
In fact, Gal(k/k) is then cyclic, and does not have any essential central
extensions because the Schur multiplier of it is trivial.

If the p-rank of Cl(’)(k) is greater than one, however, CI()(])is not
trivial anymore. We see by Nomura [4] that ]/k has a non-trivial un-
ramified central extension; in fact, we can show the following theorem by
mathematical induction with Theorem 1 of [4]"

Theorem 1. Suppose that the p-rank r of Cl((k) of a quadratic
number field k is greater than one. Then /k has an unramified central
extension K/k/k whose group Gal(K/k) is isomorphic to the metabelian
group D,

.(-- 1 [a aj]--c,D (a,c,jli 1, ,r,] i+l, ,r), a( v,
[a, c,] [c,, c,] 1, i-- 1, ., r, i--i+ 1, ., r, l_m n_r,

where the abelian group Cl(P)(k) is of type ((1), ...,e(r)), e(i)=pe’, i-1,
.., r, l_el_.. _er. In particular, we have Cl(p)(k)l L-1 e(i) (r-) and

p-rank (Cl()(k))

For simplicity, put C’-CIp)(k) and G’-Gal(fc/k) where is the
Hilbert p-clase field of ]; denote the alternative product of C by itself by
CAC, and the lower central series of G by

G,=GG=[G,, G]G=[G, G]....
Then CAC may be identified with the Schur multiplier of C, and is iso-
morphic to the commutator group.

[D, D]=(c,ll_i<]r)
of D of the theorem. Since [D, D] is contained in the center of D, we see

Corollary. Let the notation and the assumptions be as above. Then
the field K of the theorem is the maximal unramified central extension of
f/k hence, in particular, G/G is isomorphic to the group D of the theo-
rem, and G/G is to CAC.

It is possible to give a better estimate of the size of CI()(/) than that
of Theorem 1 in case of an imaginary quadratic number field k; in fact, k


