16. On the Ideal Class Groups of the p-Class Fields of Quadratic Number Fields

By Katsuya Miyake
Department of Mathematics, College of General Education, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1992)

1. We fix an odd prime p. Let k be a quadratic number field and \tilde{k} the Hilbert p-class field of k. Denote the p-primary parts of the ideal class groups of k and of \tilde{k} by $\mathrm{Cl}^{(p)}(k)$ and by $\mathrm{Cl}^{(p)}(\tilde{k})$, respectively.

If the p-rank of $\mathrm{Cl}^{(p)}(k)$ is less than or equal to one, $\mathrm{Cl}^{(p)}(\tilde{k})$ is trivial. In fact, $\operatorname{Gal}(\tilde{k} / k)$ is then cyclic, and does not have any essential central extensions because the Schur multiplier of it is trivial.

If the p-rank of $\mathrm{Cl}^{(p)}(k)$ is greater than one, however, $\mathrm{Cl}^{(p)}(\tilde{k})$ is not trivial anymore. We see by Nomura [4] that \tilde{k} / k has a non-trivial unramified central extension ; in fact, we can show the following theorem by mathematical induction with Theorem 1 of [4]:

Theorem 1. Suppose that the p-rank r of $\mathrm{Cl}^{(p)}(k)$ of a quadratic number field k is greater than one. Then \tilde{k} / k has an unramified central extension $K / \tilde{k} / k$ whose group $\operatorname{Gal}(K / k)$ is isomorphic to the metabelian group D,
$D=\left\langle a_{i}, c_{i, j} \mid i=1, \cdots, r, j=i+1, \cdots, r\right\rangle, \quad a_{i}^{\iota(i)}=c_{i, j}^{\iota(i)}=1, \quad\left[a_{i}, a_{j}\right]=c_{i, j}$,
$\left[a_{i}, c_{m, n}\right]=\left[c_{i, j}, c_{m, n}\right]=1, \quad i=1, \cdots, r, \quad j=i+1, \cdots, r, \quad 1 \leq m<n<r$,
$\left[a_{i}, c_{m, n}\right]=\left[c_{i, j}, c_{m, n}\right]=1, \quad i=1, \cdots, r, \quad j=i+1, \cdots, r, \quad 1 \leq m<n \leq r$,
where the abelian group $\mathrm{Cl}^{(p)}(k)$ is of type $(\varepsilon(1), \cdots, \varepsilon(r))$, e(i)=pen,i=1, $\cdots, r, 1 \leq e_{1} \leq \cdots \leq e_{r} . \quad$ In particular, we have $\left|\mathrm{Cl}^{(p)}(\tilde{k})\right| \geq \prod_{i=1}^{r} \varepsilon(i)^{(r-i)}$ and $p-r a n k\left(\mathrm{Cl}^{(p)}(\tilde{k})\right) \geq\binom{ r}{2}$.

For simplicity, put $C:=\mathrm{Cl}^{(p)}(k)$ and $G:=\operatorname{Gal}(\hat{k} / k)$ where \hat{k} is the Hilbert p-clase field of \tilde{k}; denote the alternative product of C by itself by $C \wedge C$, and the lower central series of G by

$$
G_{1}=G \supset G_{2}=\left[G_{1}, G\right] \supset G_{3}=\left[G_{2}, G\right] \supset \cdots
$$

Then $C \wedge C$ may be identified with the Schur multiplier of C, and is isomorphic to the commutator group

$$
[D, D]=\left\langle c_{i, j} \mid 1 \leq i<j \leq r\right\rangle
$$

of D of the theorem. Since $[D, D]$ is contained in the center of D, we see
Corollary. Let the notation and the assumptions be as above. Then the field K of the theorem is the maximal unramified central extension of \tilde{k} / k; hence, in particular, G / G_{3} is isomorphic to the group D of the theorem, and G_{2} / G_{3} is to $C \wedge C$.

It is possible to give a better estimate of the size of $\mathrm{Cl}^{(p)}(\tilde{k})$ than that of Theorem 1 in case of an imaginary quadratic number field k; in fact, k

