15. A Note on a Deformation of Dirichlet's Class Number Formula

By Shigeru Katayama
College of Engineering, Tokushima Bunri University
(Communicated by Shokichi Ifanaga, m. J. A., March 12, 1992)

§ 0. Introduction. In [3], Prof. T. Ono obtained interesting results from a deformation of Dirichlet's class number formula for real quadratic fields $Q(\sqrt{p})$, where p is a prime number of the form $p=4 N+1$. In [2], the author gave a similar deformation in the case where p is a prime number of the form $p=4 N+3$.

After the completion of [2], the author found that Dirichlet had already given a deformation of the class number formula for binary quadratic forms ([1], § 107-§ 110 and § 138-§ 140), which is, however, somewhat complicated. The purpose of this note is to give a more simple formula for any real quadratic field using the same methods as [2] and [3]. To be more precise, let m be a square-free positive integer, ε the fundamental unit >1 of the real quadratic field $Q(\sqrt{m})$ and h the class number of $Q(\sqrt{m})$. We denote by d the discriminant of $Q(\sqrt{m})$. The discriminant d is written in the form $d=P(\equiv 1 \bmod 4), 4 P$ or $8 P$, where $P=1$ or $P=p_{1} p_{2} \cdots p_{r}\left(p_{1}, p_{2}\right.$, \cdots, p_{r} are distinct odd prime numbers). ζ denotes a primitive d th root of unity. Let χ be a Kronecker character belonging to $Q(\sqrt{m})$, and $L(s, \chi)$ the corresponding L-series. As usual, we denote by ϕ the Euler function, and by μ the Möbius function. For the sake of simplicity, we denote $\phi(d) / 4$ by v. For any integer $1 \leqq t \leqq v$, define τ_{t} by putting

$$
\tau_{t}=((\phi(d) / \phi(d / n)) \cdot \mu(d / n)-\chi(t) \sqrt{d}) / 2, \quad \text { where } n=(t, d)
$$

We also define W as follows

$$
W= \begin{cases}0, & \text { if } d \text { has at least two distinct prime factors, } \\ 1, & \text { otherwise } .\end{cases}
$$

Then our main theorem reads.
Theorem. With the above notations, we have

$$
\sqrt{m^{w}} \varepsilon^{h}=2 \sum_{j=0}^{v-1} d_{j}+d_{v} .
$$

Here d_{j} are determined by the following recurrence relation.

$$
j d_{j}=\sum_{t=1}^{j} \alpha_{t} d_{j-t} \quad\left(d_{0}=1,1 \leqq j \leqq v\right)
$$

where $\alpha_{t}=-\tau_{t}$.
§ 1. Dirichlet's formula. It is known that (cf. [4])
and

$$
h \kappa=L(1, \chi), \quad \text { where } \kappa=\frac{\log \varepsilon^{2}}{\sqrt{d}} \quad \text { and } \quad L(1, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}
$$

$$
\sum_{r \bmod d} \chi(r) \zeta^{n r}=\chi(n) \sqrt{d} \quad \text { (the Gauss sum) }
$$

