12. Kostant's Theorem for a Certain Class of Generalized Kac-Moody Algebras

By Satoshi NAITO

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1992)

Introduction. Let $A = (a_{ij})_{i,j \in I}$ be a real $n \times n$ matrix satisfying the following conditions:

(C1) either $a_{ii}=2$ or $a_{ii}\leq 0$;

- (C2) $a_{ij} \leq 0$ if $i \neq j$, and $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$;
- (C3) $a_{ij}=0$ implies $a_{ji}=0$.

Such a matrix is called a generalized GCM (=GGCM). And let g(A) be the generalized Kac-Moody algebra (=GKM algebra), over the complex number field C, associated to the above GGCM A. Then, we have the root space decomposition: $g(A) = \mathfrak{h} \oplus \sum_{a \in A}^{\oplus} \mathfrak{g}_a$, where \mathfrak{h} is the Cartan subalgebra, and Δ the root system of $(\mathfrak{g}(A), \mathfrak{h})$. Let J be a subset of $I^{re} :=$ $\{i \in I \mid a_{ii} = 2\}$. And put $\mathfrak{n}_J^{\pm} := \sum_{a \in d_J}^{\oplus} \mathfrak{g}_{\pm a}, \mathfrak{u}^{\pm} := \sum_{e \in d^+(J)}^{\oplus} \mathfrak{g}_{\pm a}, \mathfrak{m} := \mathfrak{n}_J^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_J^{+},$ where $\Delta_J^{\pm} := \Delta \cap \sum_{i \in J} \mathbb{Z}_{\geq 0} \alpha_i, \Delta^+(J) := \Delta^+ \setminus \Delta_J^{\pm}$. In this paper, we study the homology $H_j(\mathfrak{u}^-, L(\Lambda))$ of \mathfrak{u}^- and the cohomology $H^j(\mathfrak{u}^+, L(\Lambda))$ of \mathfrak{u}^+ with coefficients in the irreducible highest weight $\mathfrak{g}(A)$ -module $L(\Lambda)$ with highest weight $\Lambda \in \mathfrak{h}^*$. And we prove "Kostant's homology and cohomology theorem" for symmetrizable GKM algebras associated to GGCMs satisfying the following condition (Ĉ1) instead of (C1) above :

(C1) either $a_{ii}=2$ or $a_{ii}=0$.

This result is a generalization of Kostant's Theorem for Kac-Moody algebras, which was proved by J. Lepowsky and H. Garland ([2] and [5]), or the classical result of B. Kostant himself [4] for finite dimensional complex semi-simple Lie algebras.

§ 1. Preliminaries for GKM algebras. We prepare some basic results for GKM algebras which will be needed later. For details, see [1] and [3]. Let $\mathfrak{g}(A)$ be the GKM algebra associated to a GGCM A, with the Cartan subalgebra \mathfrak{h} , simple roots $\Pi = \{\alpha_i\}_{i \in I}$, and simple co-roots $\Pi^{\vee} = \{\alpha_i^{\vee}\}_{i \in I}$. From now on, we always assume that the GGCM $A = (a_{ij})_{i,j \in I}$ is symmetrizable, and that J is a subset of $I^{re} = \{i \in I \mid a_{ii} = 2\}$. We call an \mathfrak{h} -module V \mathfrak{h} -diagonalizable if V admits a weight space decomposition: $V = \sum_{i \in \mathcal{G}(V)}^{\oplus} V_i$, where $\mathcal{P}(V)$ is the set of all weights of V.

Definition ([6]). \mathcal{O}_J is the category of all m-modules whose objects V satisfy the following:

- (1) V is \mathfrak{h} -diagonalizable;
- (2) the weight space V_{μ} is finite dimensional for all $\mu \in \mathcal{P}(V)$;
- (3) there exist a finite number of elements λ_i $(1 \le i \le s)$ in $\mathfrak{h}^* :=$