84. Remarks to our Former Paper, "Uniform Distribution of Some Special Sequences"

By Kazuo GOTO*) and Takeshi KANO**)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

Abstract: In [2], Y. H. Too pointed out that our proof of Theorem 2 of our former paper [1] contained an error. In this paper, we shall first restate the main results of [1], [2] as Theorems A, B, C, then give a revised proof of Theorem B (= Theorem 2 [1]), prove a Proposition which, combined with Theorem A (= Theorem 1 [1] which was correctly proved), yields Theorem C and finally remark that Theorem B can also be easily deduced from Theorem A.

Let p_n be the *n*-th prime number.

Theorem A (Theorem 1 [1]). Let f(x) be a continuously differentiable function with $f(x) \to \infty$ $(x \to \infty)$. If $f'(x) \log x$ is monotone, $n | f'(n) | \to \infty$ as $n \to \infty$, and

 $f(n)/(\log n)^{l} \rightarrow 0 \quad (n \rightarrow \infty) \text{ for some } l > 1,$

then $(\alpha f(p_n))$ is uniformly distributed mod 1, where $\alpha \neq 0$ is any real constant.

Theorem B (Theorem 2 [1]). Let f(x) be a continuously differentiable function with f'(t) > 0 and f''(t) > 0. If $t^2 f''(t) \to \infty$ as $t \to \infty$ and $f(n)/(\log n)^l \to 0$ $(n \to \infty)$ for some l > 1,

then $(\alpha f(p_n))$ is uniformly distributed mod 1, where $\alpha \neq 0$ is any real constant.

Theorem C (Theorem 3 [2]). Let f be a twice differentiable function with $f \to \infty$, f' > 0 and f'' < 0. If $x^2(-f''(x)) \to \infty$, $(\log x)^2(-f''(x))$ is decreasing as $x \to \infty$ and $f(n)/(\log n)^l \to 0 (n \to \infty)$ for some l > 1, then $(\alpha f(p_n))_1^{\infty}$ is uniformly distributed mod 1, where $\alpha (\neq 0)$ is any real constant.

Revised proof of Theorem B. The proof becomes correct if we change the estimation of I_2 in [1: p.84 line 6 \uparrow through p.85 line 3] as follows:

We choose any sequence $c_N \rightarrow \infty$ as $N \rightarrow \infty$, and put

$$I_2 = \int_2^{p_N} \frac{e^{2\pi i h f(t)}}{\log t} dt = \left(\int_2^{c_N} + \int_{c_N}^{p_N}\right) \frac{e^{2\pi i h f(t)}}{\log t} dt = A + B, \text{ say.}$$

Then clearly

$$|A| = \left| \int_2^{c_N} \frac{e^{2\pi i h f(t)}}{\log t} dt \right| \le \int_2^{c_N} \frac{dt}{\log t} \ll \frac{c_N}{\log c_N}.$$

Now applying [3: Lemma 10.2], we get

^{*)} Department of Mathematics, Faculty of Education, Tottori University.

^{**)} Department of Mathematics, Faculty of Science, Okayama University.