83. A Note on Certain Infinite Products

By Masao TOYOIZUMI

Department of Mathematics, Toyo University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

1. Statement of result. Let M be a positive integer, χ a real nonprincipal primitive character modulo M, $L(s, \chi)$ the associated L-series and $\zeta_M = \exp(2\pi i/M)$. Given a sequence $a(1), a(2), a(3), \cdots$ of integers such that $a(n) = O(n^c)$ for some c > 0, we define, for Im(z) > 0,

(1)
$$f_{\chi}(z) = \exp(2\pi i a z) \prod_{h=0}^{M-1} \prod_{n=1}^{\infty} (1 - \zeta_{M}^{h} q(\lambda)^{n})^{\chi(h)a(n)},$$

where $q(\lambda) = \exp(2\pi i z/\lambda)$, $\lambda > 0$ and *a* is a real number. Then the infinite product converges absolutely and uniformly in every compact subset of the upper half plane *H*. Hence $f_{\chi}(z)$ is holomorphic in *H*. To state our theorem, let $\phi(s)$ be a convergent Dirichlet series defined by

$$\phi(s) = \sum_{n=1}^{\infty} a(n) n^{-s}.$$

Theorem. Assume that $\phi(s)$ can be continued through the whole s-plane as a non-zero meromorphic function with a finite number of poles and that there exists a real number k such that

(2) $f_{\chi}(-1/z) = (z/i)^{k} f_{\chi}(z).$ Then $(\lambda/M)^{2}$ is an integer, a = k = 0 and $f_{\chi}(z)$ is given by (3) $f_{\chi}(z) = \prod_{m \mid (\lambda/M)^{2}} \psi_{\chi}(mz)^{c(m)},$

where

$$\psi_{\chi}(z) = \prod_{h=0}^{M-1} \prod_{n=1}^{\infty} (1 - \zeta_M^h q(\lambda)^n)^{\chi(h)\chi(n)},$$

and c(m), defined for *m* dividing $(\lambda/M)^2$, are integers such that $c(m) = \chi(-1)c((\lambda/M)^2/m)$ for any divisor *m* of $(\lambda/M)^2$.

Conversely, let $(\lambda/M)^2$ be an integer and let c(m), for integers m dividing $(\lambda/M)^2$, be arbitrary integers such that $c(m) = \chi(-1)c((\lambda/M)^2/m)$ for any divisor m of $(\lambda/M)^2$. Further, define $f_{\chi}(z)$ by (3). Then $f_{\chi}(z)$ satisfies $f_{\chi}(-1/z) = f_{\chi}(z)$.

Remark. In case $\lambda = M$, $\phi_{\chi}(z)$ coincides with $\eta_3(\chi; z)$ which was first defined in Katayama [1].

2. Lemmas. For any y > 0, we put

$$G(y) = -\{\log f_{\chi}(iy) + 2a\pi y\}.$$

Then from (1), we have

(4)
$$G(y) = T(\chi) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\chi(m)a(n)}{m} \exp(-2mn\pi y/\lambda),$$

where $T(\chi)$ is the Gaussian sum defined by

$$T(\chi) = \sum_{h=0}^{M-1} \chi(h) \zeta_M^h.$$