83. A Note on Certain Infinite Products

By Masao Toyoizumi
Department of Mathematics, Toyo University
(Communicated by Shokichi IYanaga, M. J. A. . Dec. 14, 1992)

1. Statement of result. Let M be a positive integer, χ a real nonprincipal primitive character modulo $M, L(s, \chi)$ the associated L-series and $\zeta_{M}=\exp (2 \pi i / M)$. Given a sequence $a(1), a(2), a(3), \cdots$ of integers such that $a(n)=O\left(n^{c}\right)$ for some $c>0$, we define, for $\operatorname{Im}(z)>0$,

$$
\begin{equation*}
f_{x}(z)=\exp (2 \pi i a z) \prod_{n=0}^{M-1} \prod_{n=1}^{\infty}\left(1-\zeta_{M}^{h} q(\lambda)^{n}\right)^{x(h) a(n)} \tag{1}
\end{equation*}
$$

where $q(\lambda)=\exp (2 \pi i z / \lambda), \lambda>0$ and a is a real number. Then the infinite product converges absolutely and uniformly in every compact subset of the upper half plane H. Hence $f_{\chi}(z)$ is holomorphic in H. To state our theorem, let $\phi(s)$ be a convergent Dirichlet series defined by

$$
\phi(s)=\sum_{n=1}^{\infty} a(n) n^{-s} .
$$

Theorem. Assume that $\phi(s)$ can be continued through the whole s-plane as a non-zero meromorphic function with a finite number of poles and that there exists a real number k such that

$$
\begin{equation*}
f_{\chi}(-1 / z)=(z / i)^{k} f_{\chi}(z) \tag{2}
\end{equation*}
$$

Then $(\lambda / M)^{2}$ is an integer, $a=k=0$ and $f_{\chi}(z)$ is given by

$$
\begin{equation*}
f_{\chi}(z)=\prod_{m \mid(\lambda / M)^{2}} \psi_{x}(m z)^{c(m)} \tag{3}
\end{equation*}
$$

where

$$
\phi_{\chi}(z)=\prod_{n=0}^{M-1} \prod_{n=1}^{\infty}\left(1-\zeta_{M}^{n} q(\lambda)^{n}\right)^{x(n) x(n)}
$$

and $c(m)$, defined for m dividing $(\lambda / M)^{2}$, are integers such that $c(m)=$ $\chi(-1) c\left((\lambda / M)^{2} / m\right)$ for any divisor m of $(\lambda / M)^{2}$.

Conversely, let $(\lambda / M)^{2}$ be an integer and let $c(m)$, for integers m dividing $(\lambda / M)^{2}$, be arbitrary integers such that $c(m)=\chi(-1) c\left((\lambda / M)^{2} / m\right)$ for any divisor m of $(\lambda / M)^{2}$. Further, define $f_{\chi}(z)$ by (3). Then $f_{\chi}(z)$ satisfies $f_{\chi}(-1 / z)=f_{\chi}(z)$.

Remark. In case $\lambda=M, \psi_{\chi}(z)$ coincides with $\eta_{3}(\chi ; z)$ which was first defined in Katayama [1].
2. Lemmas. For any $y>0$, we put

$$
G(y)=-\left\{\log f_{x}(i y)+2 a \pi y\right\}
$$

Then from (1), we have

$$
\begin{equation*}
G(y)=T(\chi) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\chi(m) a(n)}{m} \exp (-2 m n \pi y / \lambda) \tag{4}
\end{equation*}
$$

where $T(\chi)$ is the Gaussian sum defined by

$$
T(\chi)=\sum_{h=0}^{M-1} \chi(h) \zeta_{M}^{h}
$$

