On the Regularity of Prehomogeneous Vector Spaces 82.

By Akihiko GYOJA

Institute of Mathematics, Yoshida College, Kyoto University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

Introduction. 0.1. Let G be a complex linear algebraic group, and $V (\neq 0)$ a complex vector space on which G acts via a rational representation. Let V^{\vee} denote the dual space of V, on which G acts naturally.

0.2. If V has an open G-orbit, then (G, V) is called a *prehomogeneous* vector space. A prehomogeneous vector space (G, V) is called regular if there exists a (non-zero) relatively invariant polynomial function $f(x) = f(x_1, \dots, x_n)$ (x_n) on V such that

(0.3)
$$\det\left(\frac{\partial^2 \log f}{\partial x_i \partial x_j}\right) \neq 0.$$

Let (G, V) be a regular prehomogeneous vector space, and take f so that (0.3) holds. Then the following assertions hold [5, §2].

(0.4) (G, V^{\vee}) is also prehomogeneous.

(Moreover (G, V^{\vee}). is regular.)

(Moreover (G, V)). Is regular.) (0.5) Let O (resp. O^{\vee}) be the open G-orbit in V (resp. V^{\vee}). Then $O \cong O^{\vee}$. (0.6) Let $V \setminus O = (\bigcup_{i=1}^{l} S_i) \cup (\bigcup_{j=1}^{m} T_j)$ (resp. $V^{\vee} \setminus O^{\vee} = (\bigcup_{i=1}^{l'} S_i^{\vee}) \cup (\bigcup_{j=1}^{m'} T_j^{\vee})$) be the irreducible decomposition, where the codimension of S_i and S_i^{\vee} (resp. T_j and T_j^{\vee}) are one (resp. greater than one). Then l = l'.

Continue to assume (G, V) regular and prehomogeneous. Bearing (0.5)in mind, H. Yoshida posed the following problem.

Problem 1. $V \setminus O \simeq V^{\vee} \setminus O^{\vee}$?

Bearing (0.6) in mind, let us also consider the following problem.

Problem 2. For any integer c > 1, card $\{j \mid \text{codim } T_j = c\} = \text{card}$ $\{j \mid \text{codim } T_i^{\vee} = c\}?$

We shall settle Problem 1 negatively in §1, and Problem 2 affirmatively in §2.

Convention. If no explanation is given, a lowercase letter should be understood as an element of the set denoted by the same uppercase letter. We define the Bruhat order of a Coxeter group so that the identity element is minimal. We denote the complex number field by C, and the rational integer ring by \mathbf{Z} .

§1. 1.1. The following argument will be used. Let Z be a complex algebraic variety. We may assume that Z is defined over a field which is finitely generated over the rational number field. Then we can consider its specialization at enough general primes. Especially we obtain a variety over a finite field whenever the characteristic p and the cardinality q of the field are large enough. Let |Z| = |Z|(q) be the cardinality of the rational points of the variety obtained above. We understand that |Z| is a function of q,