81. On the Cardinality of Value Set of Polynomials with Coefficients in a Finite Field

By Javier Gomez-Calderon
The Pennsylvania State University
(Communicated by Shokichi, IYANAGA, M. J. A., Dec. 14, 1992)

1. Introduction. Let F_{q} denote the finite field of order q where q is a prime power. If $f(x)$ is a polynomial of positive degree d over F_{q}, let $V_{f}=\left\{f(x): x \in F_{q}\right\}$ denote the image or value set of $f(x)$ and $\left|V_{f}\right|$ denote the cardinality of V_{f}. Since $f(x)$ cannot assume a given value more than d times, it is clear that

$$
\left[\frac{q-1}{d}\right]+1 \leq\left|V_{f}\right| \leq q
$$

where $[x]$ denotes the greatest integer $\leq x$. Uchiyama [3] has proved that if F_{q} is of sufficiently large characteristic and

$$
\frac{f(x)-f(y)}{x-y}
$$

is absolutely irreducible, then $\left|V_{f}\right|>\frac{q}{2}$ for all $d \geq 4$. Carlitz [1] has also proved that $\left|V_{f}\right|>\frac{q}{2}$ "on the average." More precisely, Carlitz proved that

$$
\sum_{a_{1} \in F_{q}}\left|V_{f}\right| \geq \frac{q^{2}}{2}
$$

where the summation is over the coefficients of the first degree term in $f(x)$.
In this note we determine a lower bound for $\left|V_{f}\right|$ when $(d, q)=1$, $d^{4}<q$ and the multiplicative order of q modulo $p_{i}^{a_{i}}$ is $p_{i}^{a_{i}}-p_{i}^{a_{i}-1}$ for all prime power $p_{i}^{a_{i}} \| d$. We prove that

$$
\left|V_{f}\right| \geq \frac{q}{1+\sum_{D \mid d} \emptyset(D) / \operatorname{lcm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \ldots, \emptyset\left(p_{r}^{b_{r}}\right)\right)}
$$

where $D=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$ and $\emptyset(D)$ denotes the Euler Phi Function.
2. Theorem and proof. We will need the following two lemmas.

Lemma 1. Let $f(x)$ be a monic polynomial over F_{q} of degree $d<q$. Let \# $f^{*}(x, y)$ denote the number of solutions (x, y) in $F_{q} \times F_{q}$ of the equation $f^{*}(x, y)=f(x)-f(y)=0$. Assume

$$
\# f^{*}(x, y) \leq c q
$$

for some constant $c, 1<c<d$. Then

$$
\frac{q}{c} \leq\left|V_{f}\right|
$$

Proof. Let R_{i} denote the number of images of $f(x)$ that occur exactly i times as x ranges over F_{q}, not counting multiplicities. Then

$$
\sum_{i=1}^{d} i R_{i}=q, \quad\left|V_{f}\right|=\sum_{i=1}^{d} R_{i}, \text { and } \# f^{*}(x, y)=\sum_{i=1}^{d} i^{2} R_{i} .
$$

