9. The Structure of Compactifications of C^{3}

By Mikio Furushima
Department of Mathematics, College of Education, University of the Ryukyu

(Communicated by Heisuke Hironaka, m. J. a., Feb. 12, 1992)

Introduction. Let (X, Y) be a smooth projective compactification of C^{3} with the second Betti number $b_{2}(X)=1$. Then Y is an irreducible ample divisor on X with Pic $X \cong Z \mathcal{O}_{X}(Y)$ and the canonical divisor K_{X} can be written as $K_{X} \sim-r Y(r>0, r \in Z)$ (cf. [1]). Thus X is a Fano threefold of first kind (cf. [6]). The integer r is called the index of X.

Two smooth compactifications (X, Y) and (X^{\prime}, Y^{\prime}) are said to be isomorphic, denoted by $(X, Y) \cong\left(X^{\prime}, Y^{\prime}\right)$, if there is a biregular morphism $\alpha: X \rightarrow X^{\prime}$ such that $\alpha(Y)=Y^{\prime}$.

Then we have:
Theorem. (1) $r \geq 4 ら(X, Y) \cong\left(P^{3}, P^{2}\right)$, in fact, $r=4$;
(2) $r=3 \leftrightharpoons(X, Y) \cong\left(\boldsymbol{Q}^{3}, \boldsymbol{Q}_{0}^{2}\right)$,
(3) $r=2 \Rightarrow(X, Y) \cong\left(V_{5}, H_{5}^{0}\right)$ or $\left(V_{5}, H_{5}^{\infty}\right)$,
(4) $r=1 弓(X, Y) \cong\left(V_{22}, H_{22}^{0}\right)$ or $\left(V_{22}, H_{22}^{\circ}\right)$.

Remark 1. (1) ($\left.\boldsymbol{P}^{3}, \boldsymbol{P}^{2}\right),\left(\boldsymbol{Q}^{3}, \boldsymbol{Q}_{0}^{2}\right),\left(V_{5}, H_{5}^{0}\right),\left(V_{5}, H_{5}^{\infty}\right)$ are determined uniquely up to isomorphism (cf. [5], [8]).
(2) $\left(V_{22}, H_{22}^{0}\right),\left(V_{22}, H_{22}^{\infty}\right)$ are not unique, in fact, they have a 4-dimensional family ([7]).

Notation. \boldsymbol{Q}^{3} : a smooth quadric hypersurface in \boldsymbol{P}^{4}
\boldsymbol{Q}_{0}^{2} : a quadric cone in \boldsymbol{P}^{3}
V_{5} : a linear section $\operatorname{Gr}(2,5) \cap \boldsymbol{P}^{6}$ of the Grassmann $\operatorname{Gr}(2,5) \rightleftarrows \boldsymbol{P}^{9}$ (Plücker embedding) by three hyperplanes in P^{9}, which is the Fano threefold of the index two, degree 5 in P^{5}
H_{5}^{0} : a normal hyperplane section of V_{5} with exactly one rational double point of A_{4}-type, which is also the degenerated del-Pezzo surface of degree 5
H_{5}^{∞} : a non-normal hyperplane section of V_{5} whose singular locus is a line Σ with the normal bundle $N_{\Sigma \mid V_{5}} \cong \mathcal{O}_{\Sigma}(-1) \oplus \mathcal{O}_{\Sigma}(1)$, in particular, H_{5}^{∞} is a ruled surface swept out by lines in V_{5} intersecting the line Σ
V_{22} : the Fano threefold of index one with the genus $g=12$, degree 22 in P^{13} (the anti-canonical embedding)
$H_{22}^{0}\left(\right.$ resp. $\left.H_{22}^{\infty}\right)$: a non-normal hyperplane section of V_{22} whose singular locus is a line Z with the normal bundle $N_{Z \mid V_{22}} \cong \mathcal{O}_{Z}(-2) \oplus \mathcal{O}_{Z}(1)$, and the multiplicity mult ${ }_{z} H_{22}^{0}\left(\right.$ resp. mult $\left.{ }_{z} H_{22}^{\infty}\right)$ of $H_{22}^{0}\left(\right.$ resp. $\left.H_{22}^{\infty}\right)$ at a general point of Z is equal to two (resp. three), in particular, H_{22}^{∞} is a ruled surface swept out by conics in V_{22} intersecting the line Z.

The proof of Theorem in the case of $r \geq 2$ was given in [2], [5], [8].

