33

9. The Structure of Compactifications of C^{3}

By Mikio FURUSHIMA

Department of Mathematics, College of Education, University of the Ryukyu

(Communicated by Heisuke HIRONAKA, M. J. A., Feb. 12, 1992)

Introduction. Let (X, Y) be a smooth projective compactification of C^3 with the second Betti number $b_2(X)=1$. Then Y is an irreducible ample divisor on X with $\operatorname{Pic} X \cong Z \mathcal{O}_X(Y)$ and the canonical divisor K_X can be written as $K_X \sim -rY$ $(r>0, r \in Z)$ (cf. [1]). Thus X is a Fano threefold of first kind (cf. [6]). The integer r is called the index of X.

Two smooth compactifications (X, Y) and (X', Y') are said to be isomorphic, denoted by $(X, Y) \cong (X', Y')$, if there is a biregular morphism $\alpha : X \rightarrow X'$ such that $\alpha(Y) = Y'$.

Then we have:

Theorem. (1) $r \ge 4 \Rightarrow (X, Y) \cong (P^3, P^2)$, in fact, r=4;

(2) $r=3 \Rightarrow (X, Y) \cong (Q^3, Q_0^2),$

(3) $r=2 \Rightarrow (X, Y) \cong (V_5, H_5^0) \text{ or } (V_5, H_5^\infty),$

 $(4) \quad r = 1 \Longrightarrow (X, Y) \cong (V_{22}, H_{22}^0) \text{ or } (V_{22}, H_{22}^\infty).$

Remark 1. (1) (P^3, P^2) , (Q^3, Q_5^2) , (V_5, H_5^0) , (V_5, H_5^{∞}) are determined uniquely up to isomorphism (cf. [5], [8]).

(2) (V_{22}, H_{22}^0) , (V_{22}, H_{22}^∞) are not unique, in fact, they have a 4-dimensional family ([7]).

Notation. Q^3 : a smooth quadric hypersurface in P^4

 Q_0^2 : a quadric cone in P^3

 V_5 : a linear section $\operatorname{Gr}(2,5) \cap P^{\circ}$ of the Grassmann $\operatorname{Gr}(2,5) \longrightarrow P^{\circ}$ (Plücker embedding) by three hyperplanes in P° , which is the Fano threefold of the index two, degree 5 in P°

 H_5^0 : a normal hyperplane section of V_5 with exactly one rational double point of A_4 -type, which is also the degenerated del-Pezzo surface of degree 5

 H_{δ}^{∞} : a non-normal hyperplane section of V_{δ} whose singular locus is a line Σ with the normal bundle $N_{\Sigma|V_{\delta}} \cong \mathcal{O}_{\Sigma}(-1) \oplus \mathcal{O}_{\Sigma}(1)$, in particular, H_{δ}^{∞} is a ruled surface swept out by lines in V_{δ} intersecting the line Σ

 V_{22} : the Fano threefold of index one with the genus g=12, degree 22 in P^{13} (the anti-canonical embedding)

 $H_{22}^{0}(\operatorname{resp.} H_{22}^{\infty})$: a non-normal hyperplane section of V_{22} whose singular locus is a line Z with the normal bundle $N_{Z|V_{22}} \cong \mathcal{O}_{Z}(-2) \oplus \mathcal{O}_{Z}(1)$, and the multiplicity $\operatorname{mult}_{Z} H_{22}^{0}$ (resp. $\operatorname{mult}_{Z} H_{22}^{\infty}$) of H_{22}^{0} (resp. H_{22}^{∞}) at a general point of Z is equal to two (resp. three), in particular, H_{22}^{∞} is a ruled surface swept out by conics in V_{22} intersecting the line Z.

The proof of Theorem in the case of $r \ge 2$ was given in [2], [5], [8].