77. Spectral Concentration and Resonances for Unitary Operators

By Kazuo WATANABE

Department of Mathematics, Gakushuin University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

1. Introduction. Operator-theoretical approach to the theory of resonances for a family of selfadjoint operators H_k has been investigated by J. S. Howland ([1]), A. Orth ([4]) and W. Hunziker ([2]). (For other works see the references in these papers, and [3; VIII, §5].) In particular, Orth established a link between the theory of resonances and the limiting absorption principle, developed the theory without any analyticity assumptions, and applied it successfully to N-body Schrödinger operators using the Mourre estimate.

In the present note we are mainly interested in the abstract part of the work [4] and shall present a generalization which can cover H_k given by a form sum. (Note that in [4] it is supposed that $H_k \supset H_0 + \kappa W$.) To this end we find it convenient to construct a counterpart of Orth's abstract results for a unitary operator family U_k . It will be given in §2. In §3 we transform the results to the selfadjoint families. This amounts to considering the Cayley transform $(H_{\kappa} - i) (H_{\kappa} + i)^{-1}$ of H_{κ} , or $(H_{\kappa} - d)^{-1}$ if H_{κ} is uniformly semibounded. In §4 we apply the results to a simple example in which a Dirichlet decoupled ordinary differential operator is perturbed by a delta type measure.

In this note we present only results. Detailed proofs will be published elsewhere ([5]).

The main instrument in [1] and [4] is the Livsic matrix. It is generally defined as follows.

Definition (L). Let T be a densely defined closed operator in a Hilbert space **H** and P be a finite dimensional orthogonal projection. Then the Livsic matrix B(T, z) of T in P**H** is a finite dimensional operator defined by $P(T-z)^{-1}P = (B(z, T) - z)^{-1},$

where z belongs to the resolvent set $\rho(T) = \sigma(T)$ of T.

2. Spectral concentration for unitary operators. Let U be a unitary operator and P be an orthogonal projection onto the *m*-dimensional space $K = PH(m < \infty)$. It is not necessary that U and P commute. We put $\Omega_0 := \{w \in C ; |w| > 1\}$. We shall consider the Livsic matrix B(w) of U in K. For $w \in \Omega_0 B(w)$ is well-defined and given as _____

$$B(w) = PUP - PUP(U - w)^{-1}PUP$$

where $\overline{U} = \overline{P}U\overline{P}$.

Let $U_{\kappa} = \int_{0}^{2\pi} e^{i\theta} dF_{\kappa}(\theta)$, $\kappa \ge 0$, be unitary operators such that $U_{\kappa} \to U_{0}$ in the strong sense as $\kappa \to 0$. And let $e^{i\theta_{0}}$ be an eigenvalue of U_{0}