77. Spectral Concentration and Resonances for Unitary Operators

By Kazuo Watanabe
Department of Mathematics, Gakushuin University
(Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

1. Introduction. Operator-theoretical approach to the theory of resonances for a family of selfadjoint operators H_{k} has been investigated by J. S. Howland ([1]), A. Orth ([4]) and W. Hunziker ([2]). (For other works see the references in these papers, and [3; VIII, §5].) In particular, Orth established a link between the theory of resonances and the limiting absorption principle, developed the theory without any analyticity assumptions, and applied it successfully to N-body Schrödinger operators using the Mourre estimate.

In the present note we are mainly interested in the abstract part of the work [4] and shall present a generalization which can cover H_{k} given by a form sum. (Note that in [4] it is supposed that $H_{k} \supset H_{0}+\kappa W$.) To this end we find it convenient to construct a counterpart of Orth's abstract results for a unitary operator family U_{k}. It will be given in §2. In §3 we transform the results to the selfadjoint families. This amounts to considering the Cayley transform $\left(H_{\kappa}-i\right)\left(H_{\kappa}+i\right)^{-1}$ of H_{κ}, or $\left(H_{\kappa}-d\right)^{-1}$ if H_{κ} is uniformly semibounded. In $\S 4$ we apply the results to a simple example in which a Dirichlet decoupled ordinary differential operator is perturbed by a delta type measure.

In this note we present only results. Detailed proofs will be published elsewhere ([5]).

The main instrument in [1] and [4] is the Livsic matrix. It is generally defined as follows.

Definition (L). Let T be a densely defined closed operator in a Hilbert space \mathbf{H} and P be a finite dimensional orthogonal projection. Then the Livsic matrix $B(T, z)$ of T in $P \mathbf{H}$ is a finite dimensional operator defined by

$$
P(T-z)^{-1} P=(B(z, T)-z)^{-1}
$$

where z belongs to the resolvent set $\rho(T)$ of T.
2. Spectral concentration for unitary operators. Let U be a unitary operator and P be an orthogonal projection onto the m-dimensional space $K=P \mathbf{H}(m<\infty)$. It is not necessary that U and P commute. We put $\Omega_{0}:=\{w \in C ;|w|>1\}$. We shall consider the Livsic matrix $B(w)$ of U in K. For $w \in \Omega_{0} B(w)$ is well-defined and given as

$$
B(w)=P U P-P U \bar{P}(\bar{U}-w)^{-1} \bar{P} U P
$$

where $\bar{U}=\bar{P} U \bar{P}$.
Let $U_{\kappa}=\int_{0}^{2 \pi} e^{i \theta} d F_{\kappa}(\theta), \kappa \geq 0$, be unitary operators such that $U_{\kappa} \rightarrow U_{0}$ in the strong sense as $\kappa \rightarrow 0$. And let $e^{i \theta_{0}}$ be an eigenvalue of U_{0}

