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Let g be a finite-dimensional complex Lie algebra, and U (g) be the uni-
versal enveloping algebra of g. In this paper, we give simple and useful
criteria for finitely generated U(g)-modules H to remain finite under the.
restriction to subalgebras A c U (g), by using the algebraic varieties in fl
associated to H and A. It is shown that, besides the finiteness, the
U (g)-modules H satisfying our criteria preserve some important invariants
under the restriction.

Applying the criteria to Harish-Chandra modules of a semisimple Lie
algebra fl, we specify among other things, a large class of Lie subalgebras of
g on which all the Harish-Chandra modules are of finite type. This allows us
to extend largely the finite multiplicity theorems for induced representations
of a semisimple Lie group, established in our earlier work [8].

1. Associated varieties for finitely generated U (g) -modules. We begin
with defining three important invariants" the associated variety, the Bern-
stein degree and the Gelfand-Kirillov dimension, of finitely generated mod-
ules over a complex Lie algebra (cf. [6]).

Let V be a finite-dimensional complex vector space. We denote by S (V)
(k=0 Sk(V) the symmetric algebra of V, where S(V) is the

homogeneous component of S (V) of degree k. Let M (=o M be a finite-
ly generated, nonzero, graded S(V)-module, on which S(V) acts in such a
way as S(V) M, M+, (k, k’ >_ 0). Then each homogeneous component

Mk of M is finite-dimensional.
Proposition 1 (Hilbert-Serre, see [9, Ch. VII, 12]). (1) There exists a

unique polynomial qM(q) in q such that qM(q) dim(Mo 4- M 4- 4- Ma)
for sufficiently large q.

(2) Let (c(M)/d(M)!)qa(M)
be the leading term of PM. Then c(M) is a

positive integer, and the degree d(M) of this polynomial coincides with the
dimension of the associated algebraic cone
(1.1) p(M) {2 V* If(/) 0 for allf Anns(v)M}.
Here, Anns(v)M denotes the annihilator of M in S (V), V* the dual space of V,
and S (V) is identified with the polynomial ring over V* in the canonical way.

For a finite-demensional complex Lie algebra fl, let (Ug())g=o,... denote
the natural filtration of enveloping algebra U (g) of , where Uk() is the
subspace of U() generated by elements X...X with m _< k and X (1
_< j _< m). We identify the associated commutative ring gr U(fl)-l kO


