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In this paper we characterize the germs of algebraic subsets among the
germs of analytic subsets by validity of an inequality between orders and de-
grees for polynomial functions on them.

Throughout this paper K denotes the field C or/. Let S be a germ at 0
of an analytic subset of an open neighborhood of 0 K and Us,o(f) the
vanishing order of f K[a1, an] at 0 along S. To be accurate, if o c K
{al, an} is the analytic ideal of S at 0, m =- (al, an) c K {a1, an}
the maximal ideal at 0 and if f0 K{ax a} is the germ of fat 0, we put

s,o(f ) max{r N" fo tllr - 0}.
Theorem. Let S be a germ at 0 of an analytic subset of an open neighbor-

hood of 0 K. Suppose that S is irreducible and of positive dimension. Then
the following conditions are equivalent.

S is an analytic irreducible component of the germ of an algebraic subset.

(* *) There exists a It such that a deg f> s,o(f) for ay f K
[ax, a n] that does not vanish identically on S. Such an a must satisfy a >--_ 1.

We may replace s,o(f) in the above by the reduced order s,o(f)
limk_oo s,o(fk)/k (cf. [3]). Our theorem exhibits an analogy to Sadullaev’s
theorem [4] which characterizes the algebraic subsets by a growth estimate
of polynomial functions (cf. [1] for "analogy").

The complex case of () ===> (# ) is already known (a slight modifica-
tion of [1], Thin. A*, (2.1), where the author has carelessly omitted the
non-vanishing condition for f). The real case of ( * ===> * * easily fol-
lows from the complex case. Since Us,o(f) - degf holds for homogeneous f
which does not vanish identically on S, a

_
1 follows. Thus we have only to

prove (* *)===> (*).
Proof of(**) (*). LetJ K[ax an] be the ideal of all polyno-

mials which vanish on S. J defines the minimal algebraic subset " c Ksuch that its germ T at 0 includes S. Let p and q denote the dimensions of S
and T respectively. In complex case it is well-known that dim T- q. In real
case, the same equality follows from the following"

dim T dime Tc dime (TC) --> dim (TC) /n dim ;P ----> dim T,
where Tc denotes the complexification of T and the first equality follows
from [2], V, Prop.3. Let us put

A =-- K[a:l aCn], A {f A’deg f _-< k}, ] J A.
A/J is the set of the germs of polynomial functions on ’ of degree <= k.
We can naturally identify K with an affine chart of the projective space
KPn. Then, by the theory of Hibert polynomial applied to the closure of


