70. Examples of Elliptic Curves over \mathbf{Q} with Rank ≥ 17

By Koh-ichi NAGAO*)
(Communicated by Shokichi IYanaga, M. J. A., Nov. 12, 1992)

Abstract: We construct some elliptic curves over Q with rank ≥ 17.

Recently, Mestre $[1,2,3]$ constructed large rank elliptic curves. We summarize his results in the following three propositions.

Proposition 1 ([1]). Let \mathbb{F} be the curve over rational function field $Q(T)$ of the form
$Y^{2}=\left(429 T^{2}+55260\right) X^{4}-\left(5434 T^{2}+1239000\right) X^{3}$
$+\left(-3432 T^{4}-2451 T^{2}+1222156\right) X^{2}+\left(21736 T^{4}-3637984 T^{2}\right.$
$+134780352) X$
$+6864 T^{6}-1074992 T^{4}+53200096 T^{2}-758849264$.
Then $Q(T)$-rank of $(\underset{F}{ }$ is ≥ 11.
Proposition 2 ([2]). Let \mathbb{G}^{\prime} be the curve over $Q\left(T^{\prime}\right)\left(\mathbb{Q}\left(T^{\prime}\right)\right.$ also means rational function field) which is obtained by specializing \& to $T=\left(3 T^{\prime 2}-\right.$ $\left.478 T^{\prime}+1287\right) /\left(T^{\prime 2}-429\right)$. Then $Q\left(T^{\prime}\right)-\operatorname{rank}$ of \mathfrak{F}^{\prime} is ≥ 12.

Proposition 3 ([3]). Let C be the curve defined over Q which is obtained by specializing \mathbb{G}^{\prime} to $T^{\prime}=77$. Then $Q-$ rank of C is ≥ 15.

Let N be a fixed positive integer. For an elliptic curve E defined over Q, we define ([4])
$S=S(N)=\sum\left(2+a_{p}\right) \log p /\left(p+1-a_{p}\right)$
$S^{\prime}=S^{\prime}(N)=\Sigma-a_{p} \log p$
where $a_{p}=p+1-\# E\left(F_{p}\right)$ and p moves over prime numbers satisfying p $\leq N$. We experimentally know that elliptic curves whose S and S^{\prime} are sufficiently large have large ranks ([4]).

For a rational number t, let E_{t} be an elliptic curve defined over Q which is obtained by specializing (F) to $T=t$. We consider the family of elliptic curves $\left\{E_{t_{1} / t_{2}}\right\}$ where (t_{1}, t_{2}) moves over coprime integers satisfying $1 \leq$ $t_{1} \leq 1000$ and $1 \leq t_{2} \leq 100$. By selecting the curves in this family satisfying $S_{401}>39, S_{1009}>54$, and, $S_{1009}^{\prime}>17000$, we obtain four curves $E_{967 / 59}, E_{866 / 35}, E_{542 / 49}$, and, $E_{537 / 71}$.

Theorem. (1) Q-rank of $E_{537 / 71}$ is ≥ 17.
(2) Q-rank of $E_{866 / 35}$ is ≥ 17.

Proof of (1). $E_{537 / 71}$ is Q-isomorphic to the following minimal Weiestrass curve of the form $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ where
$a_{1}=1$
$a_{2}=0$
$a_{3}=0$
$a_{4}=-1895782483362476188247825431$

[^0]
[^0]: *) Shiga Polytecnic college, 1414 Hurukawa cho, Oh-mihachiman shi 523, Japan.

