8. Certain Differential Operators for Meromorphically p-valent Convex Functions

By Nak Eun Cho*) and Shigeyoshi Owa**)
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 13, 1992)

Abstract: Let $J_{n}(\alpha)$ be the class of functions of the form

$$
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \cdots\}\right)
$$

which are regular in the punctured disk $E=\{z: 0<|z|<1\}$ and satisfying

$$
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+\alpha}{n+1} \quad\left(n \in N_{0}=\{0,1,2, \cdots\},|z|<1,0 \leq \alpha<1\right)
$$

where

$$
D^{n} f(z)=\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1}
$$

It is proved that $J_{n+1}(\alpha) \subset J_{n}(\alpha)$. Since $J_{0}(\alpha)$ is the class of meromorphically p-valent convex functions of order α, all functions in $J_{n}(\alpha)$ are p-valent convex. Futher properties preserving integrals are considered.

1. Introduction. Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \cdots\}\right) \tag{1.1}
\end{equation*}
$$

which are regular in the punctured disk $E=\{z: 0<|z|<1\}$. Define

$$
\begin{equation*}
D^{0} f(z)=f(z) \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
D^{1} f(z) & =\frac{a_{-p}}{z^{p}}+(p+1) a_{0}+(p+2) a_{1} z+(p+3) a_{2} z^{2}+\cdots \tag{1.3}\\
& =\frac{\left(z^{p+1} f(z)\right)^{\prime}}{z^{p}}
\end{align*}
$$

$$
\begin{equation*}
D^{2} f(z)=D\left(D^{1} f(z)\right) \tag{1.4}
\end{equation*}
$$

and for $n=1,2, \cdots$,

$$
\begin{align*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) & =\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1} \tag{1.5}\\
& =\frac{\left(z^{p+1} D^{n-1} f(z)\right)^{\prime}}{z^{p}}
\end{align*}
$$

In this paper, we shall show that a function $f(z)$ in \sum_{p}, which satisfies one of the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-p \frac{n+\alpha}{n+1}, \quad(z \in U=\{z:|z|<1\}) \tag{1.6}
\end{equation*}
$$

[^0]
[^0]: 1991 Mathematics Subject classification: Primary 30C45.
 *) Department of Applied Mathematics, College of Natural Sciences, National Fisheries University of Pusan, Korea.
 **) Department of Mathematics, Kinki University, Japan.

