66. On the Uniform Distribution Modulo One of Some Log-like Sequences

By Yeu-Hua TOO
Department of Mathematics, National Taiwan Normal University
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 1992)

1. Introduction and main results. Let p_{n} denote the nth prime number. Let f be a polynomial with real coefficients, then it is known that the sequence $\left\{f\left(p_{n}\right)\right\}_{n=1}^{\infty}$ is uniformly distributed modulo one (u.d. mod 1) if and only if f is an irrational polynomial, which means that the polynomial $f(x)-$ $f(0)$ has one irrational coefficient at least. (cf. [3]). Furthermore, it is also known that for any noninteger $\alpha \in(0, \infty)$, the sequence $\left\{p_{n}^{\alpha}\right\}_{n=1}^{\infty}$ is u.d. mod 1 (see e.g. [1], [6]).

On the other hand, Goto and Kano [2] investigated the log-like functions f and obtained sufficient conditions on the function f for which the sequence $\left\{f\left(p_{n}\right)\right\}_{n=1}^{\infty}$ is u.d. mod 1. Unfortunately we could not underestand the proof of main Theorem 2. In this paper we first modify Goto and Kano's results (see Theorems 1 and 2 below) and then give a new result (Theorem 3). The proofs are given in Section 2. (Though our Theorem 1 is essentially the same as Theorem 1 of [2], we give here a proof for completeness' sake.)

Theorem 1. Let $a>0$ and let $f:[a, \infty) \rightarrow(0, \infty)$ be a differentiable function. Assume that $x f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and that for sufficiently large x, $(\log x) f^{\prime}(x)$ is monotone in x. Further, assume that for some $\varepsilon>0$, $f(x)=o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. Then the sequence $\left\{\alpha f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$, where $n_{0}=\min \left\{n: p_{n}>a\right\}$ and α is any nonzero real constant.

Theorem 2. Let $a>0$ and let $f:[a, \infty) \rightarrow(0, \infty)$ be a twice differentiable function with $f^{\prime}>0$. Assume that $x^{2} f^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and that for sufficiently large $x,(\log x)^{2} f^{\prime \prime}(x)$ is nonincreasing in x. Further, assume that for some $\varepsilon>0, f(x)=o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. Then the sequence $\left\{\alpha f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$, where $n_{0}=\min \left\{n: p_{n}>a\right\}$ and α is any nonzero real constant.

Theorem 3. Let $a>0$ and let $f:[a, \infty) \rightarrow(0, \infty)$ be a twice differentiable function with $f^{\prime}>0$. Assume that $x^{2} f^{\prime \prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty$ and that for sufficiently large x, both $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$ are nondecreasing in x. Further, assume that for some $\varepsilon>0, f(x)=$ $o\left((\log x)^{\varepsilon}\right)$ as $x \rightarrow \infty$. Then the sequence $\left\{\alpha f\left(p_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is u.d. $\bmod 1$, where $n_{0}=\min \left\{n: p_{n}>a\right\}$ and α is any nonzero real constant.

Note that Theorem 2 is essentially concerned with a convex function f, while Theorem 3 is concerned with a concave function f. Applying Theorem 3 to the function $f(x)=(\log x)^{\varepsilon}$ we obtain that the sequence $\left\{\left(\log p_{n}\right)^{\varepsilon}\right\}_{n=1}^{\infty}$ is u.d. mod 1 if $\varepsilon>1$.
2. The proofs. We first prove Theorem 3 and then prove Theorems 1

