64. On Foliation on Complex Spaces

By Akihiro SAEKI

Department of Mathematical Sciences, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1992)

- **§0.** Introduction. In this paper, we discuss foliations on reduced complex spaces. On complex manifolds, foliations are defined in two ways: as coherent subsheaves of the sheaf Θ of germs of holomorphic vector fields and of the sheaf Ω of germs of holomorphic 1-forms, satisfying the "integrability conditions". Foliations defined by vector fields and by 1-forms correspond with each other (cf. [1],[5],[6]). We define foliations on complex spaces in two ways, using vector fields and 1-forms, as a natural extension of the cases on manifolds (Definition 1.0). As the case on a complex manifolds, these two definitions are essentially equivalent with each other (Theorem 1.5). We investigate effects of morphisms of complex spaces on foliations on them. Let $X \to Y$ be a proper modification of reduced complex spaces. Then foliations on X and on Y are correspondent with each other (Theorem 3.3). Thus foliations are bimeromorphically invariant. Details of proofs etc. are written in [4].
- §1. Coherent foliations on complex spaces. Let (X, \mathcal{O}_X) be a reduced complex space. We use the following notations:

 \mathcal{Q}_X : the sheaf of germs of holomorphic 1-forms on X

 Θ_X : the sheaf of germs of holomorphic vector fields on X

 $\operatorname{sp} X$: the underlying topological space of the complex space X.

By definition, $\Theta_X = \Omega_X^*$: the dual of Ω_X . If X is a closed complex subspace of a domain $D \subset C^m$ defined by a coherent \mathcal{O}_D -ideal \mathscr{I} , note that $\Omega_X = (\Omega_D/\mathcal{O}_D d\mathscr{I}) \mid_X$.

For a coherent \mathcal{O}_{x} -module \mathcal{S} , we set

Sing
$$\mathcal{S} := \{ x \in X \mid \mathcal{S}_x \text{ is not } \mathcal{O}_{X,x}\text{-free} \}.$$

If the complex space X is reduced, then $\operatorname{Sing} \mathcal{S}$ is a thin analytic set in X. For a coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} , we use the notation:

$$S(\mathcal{T}) := \operatorname{Sing} \mathcal{S} \cup \operatorname{Sing}(\mathcal{S}/\mathcal{T}).$$

 $S(\mathcal{I})$ is an analytic set in X satisfying

$$S(\mathcal{I}) \supset \operatorname{Sing} \mathcal{I}$$
.

On $X - S(\mathcal{I})$, \mathcal{I} is locally a direct summand of \mathcal{S} .

Note that

$$\operatorname{Sing} X = \operatorname{Sing} \Omega_X$$

holds, where $\operatorname{Sing} X$ is the singular locus of the complex space X.

Definition 1.0. We define coherent foliations in two ways.

- Definition a) (by 1-forms).
- 0) A coherent foliation on X is a coherent \mathcal{O}_X -submodule F of \mathcal{Q}_X satisfying (1.1) $dF_x \subseteq F_x \wedge \mathcal{Q}_{X,x}$