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0. Introduction. In this paper, we discuss foliations on reduced com-
plex spaces. On complex manifolds, foliations are defined in two ways" as
coherent subsheaves of the sheaf 0 of germs of holomorphic vector fields
and of the sheaf of germs of holomorphic 1-forms, satisfying the "integra-
bility conditions". Foliations defined by vector fields and by 1-forms corres-
pond with each other (cf. [1],[5],[6]). We define foliations on complex spaces
in two ways, using vector fields and 1-forms, as a natural extension of the
cases on manifolds (Definition 1.0). As the case on a complex manifolds,
these two definitions are essentially equivalent with each other (Theorem
1.5). We investigate effects of morphisms of complex spaces on foliations on
them. Let X--* Y be a proper modification of reduced complex spaces. Then
foliations on X and on Y are correspondent with each other (Theorem 3.3).
Thus foliations are bimeromorphically invariant. Details of proofs etc. are
written in [4].

1. Coherent foliations on complex spaces. Let (X, Ox) be a reduced
complex space. We use the following notations"
-Qx" the sheaf of germs of holomorphic 1-forms on X
Ox" the sheaf of germs of holomorphic vector fields on X
spX" the underlying topological space of the complex space X.

By definition, 9x /2x*" the dual of /2x. If X is a closed complex sub-
space of a domain D c Cm

defined by a coherent D-ideal , note that x
(9/d) x.
For a coherent x-module , we set

Sing {x X[z is not x,z-free}.
If the complex space X is reduced, then Sing is a thin analytic set in X.
For a coherent x-submodule of , we use the notation"

S (:) Sing U Sing(3/).
S (;) is an analytic set in X satisfying

S (:7) Sing
On X- S (), :F is locally a direct summand of

Note that
Sing X Sing

holds, where Sing X is the singular locus of the complex space X.
Definition 1.0. We define coherent foliations in two ways.

Definition a) (by 1-forms).
O) A coherent foliation on X is a coherent x-submodule F of f2x satisfying

(1.1) dFx Fz A x,x


