# 7. A Remark on Higher Circular l-Units 

By Yasutaka Ihara<br>Research Institute for Mathematical Sciences, Kyoto University<br>(Communicated by Shokichi Iyanaga, m. J. A., Jan. 13, 1992)

1. Let $l$ be a prime number, and $E_{l}=E(\{0,1, \infty\})$ be the group of higher circular $l$-units defined and studied in [1] [2] (esp. [1] §2.6). As is shown in [1], elements of $E_{l}$ are $l$-units in the maximal pro-l extension $M_{l}$ of $\boldsymbol{Q}\left(\mu_{l_{\infty}}\right)$ unramified outside $l$ ( $\mu_{l \infty}$ : the group of $l$-powerth roots of 1 ), and $\boldsymbol{Q}\left(E_{l}\right)$ corresponds to the kernel of the canonical representation of the Galois group $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ in the outer automorphism group of the pro-l fundamental group of $\boldsymbol{P}^{1}-\{0,1, \infty\}$. The main purpose of this note is to prove the following

Theorem. For any $\varepsilon \in E_{l}$ and $\sigma \in \operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q}), \varepsilon^{\sigma-1}$ is a unit.
In other words, if $\varepsilon \in E_{l}$ and $k$ is any finite Galois extension over $\boldsymbol{Q}$ containing $\varepsilon$, then the fractional ideal $(\varepsilon)=\varepsilon \mathcal{O}_{k}$ is $\operatorname{Gal}(k / \boldsymbol{Q})$-invariant $\left(\mathcal{O}_{k}\right.$ : the ring of integers of $k$ ).

The above theorem holds trivially when $l$ is a regular prime. In fact, in this case, $l$ has a unique extension in $M_{l}$ and hence every $l$-unit in $M_{l}$ has the claimed property. (To see that $l$ has a unique extension in $M_{l}$, first observe that it is so in the maximal $l$-elementary abelian extension of $\boldsymbol{Q}\left(\mu_{l}\right)$ unramified outside $l$; then apply the Burnside principle "a closed subgroup $D$ of a pro-l group $G$ coincides with $G$ if its image $\bar{D}$ on the Frattini quotient $\bar{G}$ of $G$ coincides with $\bar{G}$ ', to the decomposition group $D \subset \operatorname{Gal}\left(M_{l} / \boldsymbol{Q}\left(\mu_{l}\right)\right)$ of an extension of $l$.) But when $l$ is irregular, $l$ does decompose in $M_{l}$; hence not all the $l$-units of $M_{l}$ can enjoy the property stated in the theorem.

In [1] (§0.2), we raised two questions (a) (b), which, in the present language, read as
(a) $\boldsymbol{Q}\left(E_{l}\right)=M_{l}$ ?
(b) Is $E_{l}$ the full group of l-units in $\boldsymbol{Q}\left(E_{l}\right)$ ?

The above theorem implies that when $l$ is irregular, $E_{l}$ cannot be the group of all $l$-units in $M_{l}$, and hence at most one of (a) (b) can have an affirmative answer. In any case, it is an interesting open question to characterize the field $\boldsymbol{Q}\left(E_{l}\right)$ and the group $E_{l}$.
2. Proof of the theorem. The proof is quite elementary. Let $v$ denote any extension to $\overline{\boldsymbol{Q}}$ of the normalized additive $l$-adic valuation $\operatorname{ord}_{l}$ of $\boldsymbol{Q}$ (so, $v(l)=1)$.

Lemma 1. If $a=b^{l} \in \overline{\boldsymbol{Q}}^{\times}$and $v(a-1)<l(l-1)^{-1}$, then $v(b-1)=l^{-1} \times$ $v(a-1)$.

Proof. Decompose $a-1$ into the product of $b-\zeta^{i}$ over all $i(\bmod l), \zeta$

