7. A Remark on Higher Circular l-Units

By Yasutaka IHARA
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1992)

1. Let l be a prime number, and $E_l = E(\{0,1,\infty\})$ be the group of higher circular l-units defined and studied in [1] [2] (esp. [1] §2·6). As is shown in [1], elements of E_l are l-units in the maximal pro-l extension M_l of $Q(\mu_{l\omega})$ unramified outside l ($\mu_{l\omega}$: the group of l-powerth roots of 1), and $Q(E_l)$ corresponds to the kernel of the canonical representation of the Galois group $\operatorname{Gal}(\overline{Q}/Q)$ in the outer automorphism group of the pro-l fundamental group of $P^1 - \{0, 1, \infty\}$. The main purpose of this note is to prove the following

Theorem. For any $\varepsilon \in E_i$ and $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, $\varepsilon^{\sigma-1}$ is a unit.

In other words, if $\varepsilon \in E_i$ and k is any finite Galois extension over Q containing ε , then the fractional ideal $(\varepsilon) = \varepsilon \mathcal{O}_k$ is $\operatorname{Gal}(k/Q)$ -invariant (\mathcal{O}_k) : the ring of integers of k.

The above theorem holds trivially when l is a regular prime. In fact, in this case, l has a unique extension in M_l and hence every l-unit in M_l has the claimed property. (To see that l has a unique extension in M_l , first observe that it is so in the maximal l-elementary abelian extension of $\mathbf{Q}(\mu_l)$ unramified outside l; then apply the Burnside principle "a closed subgroup D of a pro-l group G coincides with G if its image \overline{D} on the Frattini quotient \overline{G} of G coincides with \overline{G} " to the decomposition group $D \subset \operatorname{Gal}(M_l/\mathbf{Q}(\mu_l))$ of an extension of l.) But when l is irregular, l does decompose in M_l ; hence not all the l-units of M_l can enjoy the property stated in the theorem.

In [1] ($\S 0 \cdot 2$), we raised two questions (a) (b), which, in the present language, read as

- (a) $\mathbf{Q}(E_i) = M_i$?
- (b) Is E_i the full group of l-units in $Q(E_i)$?

The above theorem implies that when l is irregular, E_l cannot be the group of all l-units in M_l , and hence at most one of (a) (b) can have an affirmative answer. In any case, it is an interesting open question to characterize the field $Q(E_l)$ and the group E_l .

2. Proof of the theorem. The proof is quite elementary. Let v denote any extension to \overline{Q} of the normalized additive l-adic valuation ord_l of Q (so, v(l)=1).

Lemma 1. If $a=b^l\in \bar{Q}^{\times}$ and $v(a-1)< l(l-1)^{-1}$, then $v(b-1)=l^{-1}\times v(a-1)$.

Proof. Decompose a-1 into the product of $b-\zeta^i$ over all $i \pmod{l}$, ζ