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1. Introduction. The notion of the Mordell-Weil lattice of an elliptic
curve over a function field (or of an elliptic surface) has been established in
our previous work together with its basic properties (see [4], [5]). In this
note, we sketch a generalization to the case of an algebraic curve of higher
genus over a function field (or of an algebraic surface with higher genus

fibration), and give a nontrivial example. Detailed account is in preparation.
Let K /(C) be the function field of an algebraic curve C over an

algebraically closed ground field /c; the curve C should serve as the base
curve of some fibration and it is assumed to be smooth and projective. Let
F/K be a smooth projective curve of genus g > 0 with a K-rational point
0 F(K), and let J/K denote the Jacobian variety of F/K. Assume the
following condition:
() The K/k-trace of J is trivial.
Then the group of K-rational points J (K) is a finitely generated abelian
group (Mordell-Weil theorem), and the set F (K) of K-rational points of F is
a finite subset of jr(K) if g > 1 (Mordell conjecture for function fields
Theorem of Grauert-Manin-Samuel). We refer to Lang’s book [2] for the
above.

The main idea of this note is to view the Mordell-Weil group J (K) (mod-
ulo torsion) as a Euclidean lattice with respect to a natural pairing defined in
terms of intersection theory on an associated surface, in the same way as the
case of g 1 (el. [41, [51).

2. Basic theorems. Given F/K as above, we can associate an algeb-
raic surface with a relatively minimal fibration
(1) f S--, C.
Namely, S is a smooth projective surface, f is a morphism with the generic
fibre F/K and there are no exceptional curves of the first kind in any fibre.
The K-rational points of F are ina natural one-one correspondence with the
sections of f; for P F(K), (P) will denote the section regarded as a
curve in S. Let NS(S) be the Nron-Severi group of S. Then we have

Theorem 2.1. Under the assumption ), there is a natural isomorphism:

(2) J (K) - NS(S)/T
where T is the subgroup generated by (0) and all the irreducible components of
fibres of f.

For simplicity, assume in the following that ( ) NS(S) is
torsion-free. Then it forms an integral lattice with respect to the intersection
pairing, of signature (1, p 1) (Hodge index theorem), p.= rk NS(S) being


