# 26. Some Observations Concerning the Distribution of the Zeros of the Zeta Functions. III 

By Akio Fujir<br>Department of Mathematics, Rikkyo University<br>(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1992)

§ 1. Introduction. The purpose of the present article is to give a refinement on our previous results (e.g. Theorems 6 and 7 in pp. 141-142 of [4] and a special case of Theorem in p. 100 of [1]) on the exponential sums over the zeros of some zeta functions. Some of the consequences resulting from this will also be mentioned.

Let $L(s, \psi)$ be a Dirichlet $L$-function with a primitive Dirichlet character $\psi \bmod k \geq 1$. When $k=1$, we suppose that $L(s, \psi)=\zeta(s)=$ the Riemann zeta function. Let $\gamma(\psi)$ run over the imaginary parts of the zeros of $L(s, \psi)$. We shall prove the following theorem under the Generalized Riemann Hypothesis (G.R.H.) for $L(s, \psi)$.

Theorem. (Under G.R.H.) Suppose that $0<\alpha \ll T, 1 \ll Y \leq T$ and $b$ be any positive number. Then we have

$$
\begin{aligned}
& \sum_{Y<r(\psi) \leq T} e^{i b r(\psi) \log (b r(\psi) / 2 \pi e \alpha)}=-e^{(\pi / 4) i} \frac{\sqrt{\alpha}}{b} \\
&+O\left(\operatorname{Min}\left(\frac{1}{|\log Y / 2 \pi|}, \sqrt{\alpha}+1\right) \log k T\right)+O\left(\frac{\log k T}{\log \log k T}\right) \\
&+O(B(b, k, \alpha, T))+O\left(C(b, \alpha, Y, T) \log \frac{T}{\alpha}\right)
\end{aligned}
$$

where $\Lambda(n)$ is the von-Mangoldt function,

$$
C(b, \alpha, Y, T)= \begin{cases}\left(\frac{\alpha}{Y}\right)^{b / 2} \sqrt{Y} & \text { if } b>1 \\ \sqrt{\alpha} \log \frac{T}{Y} & \text { if } b=1 \\ \eta_{\alpha}(Y) \sqrt{T}\left(\frac{\alpha}{T}\right)^{b / 2}+\left(1-\eta_{\alpha}(Y)\right) \sqrt{ } \bar{\alpha} & \text { if } 0<b<1\end{cases}
$$

$\eta_{\alpha}(Y)=1$ if $\alpha<C Y$, and $=0$ if $\alpha \geq C Y$ with some positive constant $C$ and $B(b, k, \alpha, T)$
$=\operatorname{Min}\left(\left(\frac{T}{\alpha}\right)^{b / 2} \log \frac{T}{\alpha} \frac{\log k T}{(\log \log k T)^{2}},\left(\frac{T}{\alpha}\right)^{b /(\log \log k T)} \frac{\log k T}{\log \left((\log k T) /(T / \alpha)^{b}+2\right)}\right)$
$+\left(\frac{T}{\alpha}\right)^{b / 2}\left(\log \frac{T}{\alpha} \log \log \frac{T}{\alpha}+\sqrt{\frac{\log k T}{\log \log k T}} \frac{1}{\log \left((T / \alpha)^{b} /(\log k T \cdot \log \log k T)+2\right)}\right.$

$$
\left.+\frac{\log (T / \alpha)}{T} \frac{\log k T}{(\log \log k T)^{2}}\right)
$$

If we ignore the dependence on $k$ and $\alpha$, we get the following simpler

