25. Eisenstein Series on Quaternion Half-space of Degree 2

By Shoyu NAGAOKA

Department of Mathematics, Kinki University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1992)

1. Eisenstein series. Let H denote the skew field of real Hamiltonian quaternions with the canonical basis $e_1=1$, e_2 , e_3 , e_4 . Let Her(n, H) denote the real Jordan algebra consisting of all quaternion Hermitian $n \times n$ matrices and $Pos(n, H) := \{Y \in Her(n, H) | Y > 0\}$ the open subset of all positive definite matrices. Then the quaternion half-space of degree n is given by

$$\mathcal{H}(n, H) := \{Z = X + iY \mid X \in Her(n, H), Y \in Pos(n, H)\} \subset Her(n, H) \otimes_{R} C.$$

Set $J_{n} = \begin{pmatrix} 0_{n} & E_{n} \\ -E_{n} & 0_{n} \end{pmatrix}$. The group
 $G_{n} := \{M \in M(2n, H) \mid {}^{t}\overline{M}J_{n}M = qJ_{n} \text{ for some } q \in R_{+}\}$

acts on $\mathcal{H}(n, H)$ in the usual way. Given $Z \in \mathcal{H}(n, H)$ and $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G_n$ with $n \times n$ blocks A, B, C, D set

$$M\langle Z\rangle := (AZ+B)(CZ+D)^{-1}$$

The Hurwitz order is denoted

$$\mathcal{O} = Ze_0 + Ze_1 + Ze_2 + Ze_3, \qquad e_0 = \frac{1}{2}(e_1 + e_2 + e_3 + e_4)$$

(cf. [1], [4]).

The group

 $\Gamma_n := \{ M \in M(2n, \mathcal{O}) \mid {}^t \overline{M} J_n M = J_n \}$

is called the modular group of quaternions of degree n. Let $\Gamma_{n,\infty}$ denote the subgroup of Γ_n defined by

$$\Gamma_{n,\infty} := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_n \,|\, C = 0_n \right\}.$$

Given $A \in M(n, H)$, A^{\vee} denotes the element of M(2n, C) obtained by the representation of quaternions as complex 2×2 matrices and we define $\delta(A) = \det^{1/2}(A^{\vee})$ (we take as $\delta(A) > 0$ for $A \in Pos(n, H)$).

We define a kind of Eisenstein series on $\mathcal{H}(n, H)$ by

$$E_k^{(n)}(Z,s) = \delta(Y)^{s/2} \sum_{\substack{({* \atop C} D) \in \Gamma_{n,\infty} \setminus \Gamma_n}} |\delta(CZ+D)|^{-s} \delta(CZ+D)^{-k},$$

where $k \in \mathbb{Z}$, $(\mathbb{Z}, s) \in \mathcal{H}(n, H) \times \mathbb{C}$ and $\mathbb{Z} = X + iY$. It is known that this series is absolutely convergent if $\operatorname{Re}(s) + k > 2(2n-1)$. Put, for $Y \in Pos(n, H)$, $H \in Her(n, H)$, and $(\alpha, \beta) \in \mathbb{C}^2$,

$$\xi^{(n)}(Y,H;\alpha,\beta) = \int_{Her(n,H)} \boldsymbol{e}(-\tau(H,V))\delta(V+iY)^{-\alpha}\delta(V-iY)^{-\beta}dV,$$

where τ denotes the reduced trace form, $e(s) = \exp(2\pi i s)$ for $s \in C$, and dV is the Euclidean measure on Her(n, H) by viewing it as $\mathbb{R}^n \times H^{(n(n-1))/2}$ (cf. [8],