25. On Certain Real Quadratic Fields with Class Number 2

By Shigeru Katayama
College of General Education, Tokushima Bunri University
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1991)

Let D be a square-free rational integer and $\varepsilon_{D}=(t+u \sqrt{D}) / 2(t, u>0)$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{D})$ with $N \varepsilon_{D}=-1$, where N is the norm map from $\boldsymbol{Q}(\sqrt{D})$ to \boldsymbol{Q}. Then D is expressed in the form $D=u^{2} n^{2} \pm 2 a n+b$, where n, a and b are integers such that $n \geqq 0,0 \leqq a<u^{2} / 2$ and $a^{2}+4=b u^{2}$ (cf. [6]). We denote by $h(D)$ the class number of $\boldsymbol{Q}(\sqrt{D})$. In our previous paper [1], we treated the problem of enumerating the real quadratic fields $\boldsymbol{Q}(\sqrt{D})$ with $h(D)=1$ and $1 \leqq u \leqq 300$ (the cases $u=1$ and $u=2$ were treated in [3]).

In this paper, we shall consider the same problem for real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{D})$ with $h(D)=2$ and $1 \leqq u \leqq 200$.

We note here that the list in [4] is incomplete as it misses $\boldsymbol{Q}(\sqrt{3365})$ whereas $h(3365)=2$.

In the same way as in [1], we have the following theorem.
Theorem. With the notation as above, there exist 45 real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{D})$ with class number two for $1 \leqq u \leqq 200$, where D are those in table with one possible exception.

Proof. Let d be the discriminant of $\boldsymbol{Q}(\sqrt{ } \bar{D})$, that is, $d=D$ or $4 D$, according as $D \equiv 1(\bmod 4)$ or not. Let χ_{d} be the Kronecker character belonging to $\boldsymbol{Q}(\sqrt{ } \bar{D})$ with the discriminant d and $L\left(s, \chi_{d}\right)$ be the corresponding L-series. Then by Theorem 2 of [5], we have for any $y \geqq 11.2$ satisfying $e^{y} \leqq d$

$$
L\left(1, \chi_{d}\right)>\frac{0.655}{y} d^{-1 / y}
$$

with one possible exception of d.
Hence from class-number formula, we have

$$
\begin{aligned}
h(D) & =\frac{\sqrt{d}}{2 \log \varepsilon_{D}} L\left(1, \chi_{d}\right)>\frac{0.655}{y} \frac{\sqrt{d} d^{-1 / y}}{2 \log (u \sqrt{d})} \\
& \geqq \frac{0.655 e^{(y / 2)-1}}{y(y+2 \log u)} .
\end{aligned}
$$

Put for convenience

$$
g(\log u, y)=\frac{0.655 e^{(y / 2)-1}}{y(y+2 \log u)} .
$$

Then $g(\log u, y)$ is a monotone increasing function for $y \geqq 11.2$. Therefore for any fixed u, there exists a real number $c=c(u)$ such that $c \geqq 11.2$

