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Let X be a compact Riemann surface of genus ¢>2 and let Aut(X) be
the group of all conformal automorphisms on X. Let p: Aut (X)—GL(g, C)
denote the canonical representation for a (fixed) basis {&,, - - -, &,} of abelian
differentials of the first kind on X. In fact, for a ¢ ¢ Aut (X), we define the
matrix (s;;) € GL(g, C) by the relation:

HE)=21s8 (=10

Here ¢*(&,) means the pull-back of & by ¢. We denote by p(AG; X) the
image of a subgroup AG of Aut(X) by p. The purpose of this paper is to
investigate conditions for a non abelian subgroup of GL(g, C) of order 8 to
be conjugate to some p(AG; X) (for some AG and some X). We say that
GCGL(g, C) arises from a compact Riemann surface of genus g if G has
the above property.

A more detailed account will be published elsewhere.

§1. Preliminaries. Let G be a finite subgroup of GL(g,C) and H a
non-trivial cyclic subgroup of G. Define two sets CY(G) and CY(G; H) by

CY(G) :={K; K is a non-trivial cyclic subgroup of G},

CY(G; H) :={K e CY(G@); K contains H strictly}.

Definition (see [1]). We say that G satisfies the CY-condition, if any
element of CY(G) is GL(g, C)-conjugate to a group arising from Riemann
surfaces of genus g.

Definition. We say that G satisfies E condition if for every element
A of G, Tr(A)+Tr(A-Y) is an integer. Further we define as follows:

r(H) :=2—(Tr (A)+Tr(A"), where H={A).

ro(H; @=7(H)— Y ¢ r+«(K; G), where K ranges over the set CY(G; H).

H; G) :=@yw(H; @)/[Ny(H): H] where Ny(H) means the normalizer
of H in G.

We say that G satisfies the RH-condition if G satisfies the E condition and
I(H ; @) is a non-negative integer for any H € CY(G).

We denote by D, and @, respectively, the dihedral group of order 8
and quaternion group,

i.e., Dy=(a,b;a'=b'=1,b""ab=0a""),
Qs=<a,b;a'=1,a*=0% b-lab=a"").
The character table of D, is as follows (Q, has the same character table):



