11. On Automorphism Groups of Compact Riemann Surfaces with Prescribed Group Structure

By Hideyuki Kimura
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1991)

Let X be a compact Riemann surface of genus $g \geq 2$ and let $\operatorname{Aut}(X)$ be the group of all conformal automorphisms on X. Let ρ : Aut $(X) \rightarrow G L(g, C)$ denote the canonical representation for a (fixed) basis $\left\{\xi_{1}, \cdots, \xi_{g}\right\}$ of abelian differentials of the first kind on X. In fact, for a $\sigma \in \operatorname{Aut}(X)$, we define the matrix $\left(s_{i j}\right) \in G L(g, C)$ by the relation:

$$
\sigma^{*}\left(\xi_{i}\right)=\sum_{j=1}^{g} s_{i j} \xi_{j} \quad(i=1, \cdots, g) .
$$

Here $\sigma^{*}\left(\xi_{i}\right)$ means the pull-back of ξ_{i} by σ. We denote by $\rho(A G ; X)$ the image of a subgroup $A G$ of $\operatorname{Aut}(X)$ by ρ. The purpose of this paper is to investigate conditions for a non abelian subgroup of $G L(g, C)$ of order 8 to be conjugate to some $\rho(A G ; X)$ (for some $A G$ and some X). We say that $G \subset G L(g, C)$ arises from a compact Riemann surface of genus g if G has the above property.

A more detailed account will be published elsewhere.
§ 1. Preliminaries. Let G be a finite subgroup of $G L(g, C)$ and H a non-trivial cyclic subgroup of G. Define two sets $C Y(G)$ and $C Y(G ; H)$ by
$C Y(G):=\{K ; K$ is a non-trivial cyclic subgroup of $G\}$,
$C Y(G ; H):=\{K \in C Y(G) ; K$ contains H strictly $\}$.
Definition (see [1]). We say that G satisfies the $C Y$-condition, if any element of $C Y(G)$ is $G L(g, C)$-conjugate to a group arising from Riemann surfaces of genus g.

Definition. We say that G satisfies E condition if for every element A of $G, \operatorname{Tr}(A)+\operatorname{Tr}\left(A^{-1}\right)$ is an integer. Further we define as follows:
$r(H):=2-\left(\operatorname{Tr}(A)+\operatorname{Tr}\left(A^{-1}\right)\right)$, where $H=\langle A\rangle$.
$r_{*}(H ; G)=r(H)-\sum_{K} r_{*}(K ; G)$, where K ranges over the set $C Y(G ; H)$.
$l(H ; G):=\left(r_{*}(H ; G)\right) /\left[N_{G}(H): H\right]$ where $N_{G}(H)$ means the normalizer of H in G.
We say that G satisfies the $R H$-condition if G satisfies the E condition and $l(H ; G)$ is a non-negative integer for any $H \in C Y(G)$.

We denote by D_{8} and Q_{8}, respectively, the dihedral group of order 8 and quaternion group,

$$
\begin{array}{ll}
\text { i.e., } \quad & D_{8}=\left\langle a, b ; a^{4}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle, \\
& Q_{8}=\left\langle a, b ; a^{4}=1, a^{2}=b^{2}, b^{-1} a b=a^{-1}\right\rangle .
\end{array}
$$

The character table of D_{8} is as follows (Q_{8} has the same character table):

