10. Domains of Square Roots of Regularly Accretive Operators

By Yôichi Miyazaki
School of Dentistry, Nihon University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1991)

1. Introduction. The purpose of this paper is to give a sufficient condition for the domain of the square root of a regularly accretive operator and that of its adjoint operator to be the same.

Let X and V be two Hilbert spaces with $V \subset X$. Let the inclusion from V into X be continuous, and let V be dense in X. We denote by (f, g) (resp. $(u, v)_{V}$) the inner product in X (resp. V) and put $\|f\|=(f, f)^{1 / 2}$ and $\|u\|_{V}=(u, u)_{V}^{1 / 2}$.

Let $a[u, v]$ be a bounded sesquilinear form on $V \times V$;

$$
\begin{equation*}
|a[u, v]| \leqq M\|u\|_{V}\|v\|_{V}, \quad M>0, \text { for any } u, v \in V \tag{1.1}
\end{equation*}
$$

We suppose that $a[u, v]$ is strongly coercive;

$$
\begin{equation*}
\operatorname{Re} a[u, u] \geqq \delta\|u\|_{V}^{2}, \quad \delta>0, \text { for any } u \in V \tag{1.2}
\end{equation*}
$$

Let A be the closed operator associated with the variational triple $\{V, X, a\}$, that is, $u \in V$ belongs to $D(A)$ (the domain of A) if and only if there exists $f \in X$ such that $a[u, v]=(f, v)$ for any $v \in V$, and we define $A u=f$. We call A a regularly accretive operator.

We define the adjoint form $a^{*}[u, v]$ by $a^{*}[u, v]=\overline{a[v, u]}$ for any $u, v \in V$. It is known that the closed operator associated with the variational triple $\left\{V, X, a^{*}\right\}$ is the adjoint operator A^{*} of A.

As is well known, we can construct the fractional power $A^{\theta}(0 \leqq \theta \leqq 1)$ of the regularly accretive operator A. Kato [3] showed that $D\left(A^{\theta}\right)=$ $D\left(A^{* \theta}\right) \subset V$ if $0 \leqq \theta<1 / 2$. But generally $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)$ does not hold, for Mcintosh [7] gave a counterexample. On the other hand, Kato and Lions obtained the following results independently.

Theorem A (Kato [4], Lions [6]). Each of the following condition is sufficient for $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)=V$.
(i) Both $D\left(A^{1 / 2}\right)$ and $D\left(A^{* 1 / 2}\right)$ are oversets (or subsets) of V.
(ii) $D\left(A^{\theta}\right)=D\left(A^{* \theta}\right)$ for $\theta=1 / 2$ or 1 .
(iii) There exists a Hilbert space W which satisfies (1) $W \subset X$, (2) V is a closed subspace of $[X, W]_{1 / 2}$, (3) $D(A) \subset W$ and $D\left(A^{*}\right) \subset W$, where $[X, W]_{\theta}$ $(0 \leqq \theta \leqq 1)$ denotes the complex interpolation space of X and W.

Remark 1. Theorem A-(iii) is due only to Lions.
Remark 2. We may replace Theorem A-(ii) with $D\left(A^{\theta}\right)=D\left(A^{* \theta}\right)$ for some θ with $1 / 2 \leqq \theta \leqq 1$, because we have $\left[X, D\left(A^{\theta}\right)\right]_{1 /(2 \theta)}=D\left(A^{1 / 2}\right)$.

In the next section we give another sufficient condition for $D\left(A^{1 / 2}\right)=$ $D\left(A^{* 1 / 2}\right)=V$.
2. Main result. The sesquilinear form $a[u, v]$ can be written

