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1. Introduction. The purpose of this paper is to give a sufficient
condition for the domain of the square root of a regularly accretive operator
and that of its adjoint operator to be the same.

Let X and V be two Hilbert spaces with VX. Let the inclusion
from V into X be continuous, and let V be dense in X. We denote by (f, g)
(resp. (u, v)) the inner product in X (resp. V) and put IIfIl-(f, f)n and
u II (u, u).

Let a[u, v] be a bounded sesquilinear form on V V;
(1.1) la[u, v][Ml[ullvIIvllv, M>O, for any u, v e V.
We suppose that a[u, v] is strongly coercive;
(1.2) Re a[u, u] 3 u I1, > O, for any u e V.
Let A be the closed operator associated with the variational triple {V, X,
that is, u e V belongs to D(A) (the domain of A) if and only if there exists

f e X such that a[u, v]--(f, v) for any v e V, and we define Au-f. We
call A a regularly accretive operator.

We define the adjoint form a*[u, v] by a*[u, v]=a[v, u] for any u, v e V.
It is known that the closed operator associated with the variational triple
{V, X, a*} is the adjoint operator A* of A.

As is well known, we can construct the fractional power A (00_<_1)
of the regularly accretive operator A. Kato [3] showed that D(AO)
D(A*o)cV if 0=<01/2. But generally D(A/)--D(A*/) does not hold, for
Mcintosh [7] gave a counterexample. On the other hand, Kato and Lions
obtained the following results independently.

Theorem A (Kato [4], Lions [6]). Each of the following condition is
sufficient for D(A/) D(A*/)= V.

( ) Both D(A/) and D(A*) are oversets (or subsets) of V.
(ii) D(A)- D(A*) for t=1/2 or 1.
(iii) There exists a Hilbert space W which satisfies (1) WcX, (2) V is

a closed subspace o.f IX, W]n, (3) D(A)W and D(A*)W, where [X, W]
(0<_tl) denotes the complex interpolatio.n space of X and W.

Remark 1. Theorem A-(iii) is due only to Lions.
Remark 2. We may replace Theorem A-(ii) with D(A)=D(A*) for

some t with 1/2__<1, because we have [X, D(A)]()=D(A/).
In the next section we give another sufficient condition for D(A’/)=

D(A*m) V.
2. Main result. The sesquilinear form a[u, v] can be written


