85. On Fundamental Units of Real Quadratic Fields with Norm - 1

By Shin-ichi Katayama
College of General Education, Tokushima University

(Communicated by Shokichi Iyanaga, m. J. a., Dec. 12, 1991)

1. There are many known results on explicit forms of the fundamental units of real quadratic fields of certain types (cf. [1], [2], [3], [5], [7], [8]). In this paper, we shall give a new explicit form of the fundamental units of real quadratic fields with norm -1 . Let m be a positive integer which is not a perfect square and K be the real quadratic field $\boldsymbol{Q}(\sqrt{m}) . \varepsilon_{0}$ denotes the fundamental unit of K, N the norm map from K to Q. We put

$$
\begin{aligned}
& R_{-}=\left\{K: \text { real quadratic fields with } N \varepsilon_{0}=-1\right\}, \\
& E_{-}=\left\{\varepsilon: \text { units of } K \in R_{-} \text {with } N \varepsilon=-1\right\} .
\end{aligned}
$$

Then it is easy to see $R_{-}=\left\{\boldsymbol{Q}\left(\sqrt{a^{2}+4}\right): a \in N\right\}$, where N is the set of all the natural numbers. Fix now a unit $\varepsilon=(t+u \sqrt{m}) / 2 \in E_{-}(t, u>0)$ for a while, and we denote $\varepsilon^{n}=\left(t_{n}+u_{n} \sqrt{m}\right) / 2$. $\bar{\varepsilon}$ denotes $(t-u \sqrt{m}) / 2$. Since $t_{n}=\varepsilon^{n}+\tilde{\varepsilon}^{n}$, we have

$$
t_{n+1}=\varepsilon^{n+1}+\bar{\varepsilon}^{n+1}=\left(\varepsilon^{n}+\dot{\varepsilon}^{n}\right)(\varepsilon+\bar{\varepsilon})+\varepsilon^{n-1}+\bar{\varepsilon}^{n-1}=t t_{n}+t_{n-1} \quad(n \geq 2) .
$$

Combining this recurrence and the fact $t_{1}=t$ and $t_{2}=t^{2}+2$, we get inductively $t \mid t_{2 n+1}$ and $t_{2 n+1} \geq t_{3} \geq 4 t(n \geq 1)$. Hence we have obtained the following elementary lemma.

Lemma 1. With the above notation, we have
(i) $t_{n+1}=t t_{n}+t_{n-1}(n \geq 2)$ and $t_{1}=t, t_{2}=t^{2}+2$,
(ii) $t \mid t_{2_{n+1}}$ and $t_{2 n+1} \geq 4 t(n \geq 1)$.

From this lemma follows:
Lemma 2. If $t_{2 n+1}$ is a prime, then $t=1$ and $2 n+1$ is prime.
Proof. If $t \geq 2, t_{2 n+1}$ can not be a prime by Lemma 1 (ii). Suppose now $2 n+1$ decomposes into $2 n+1=(2 k+1)(2 l+1)$, where $2 k+1,2 l+1>1$. Then, from (ii) of Lemma 1, $\varepsilon^{2 n+1}=\left(\varepsilon^{2 k+1}\right)^{2 l+1}$ implies $t_{2 k+1} \mid t_{2 n+1}, t_{2 k+1} \geq 4$ and $t_{2 n+1} / t_{2 k+1} \geq 4$. Therefore $t_{2 n+1}$ can not be a prime.

Examine now the case $t=1$, From $N \varepsilon=-1$ and $t=1$ follows $u^{2} m=5$, so $u=1, m=5$. Thus t_{n} is nothing but the nth Lucas number v_{n} $=\{(1+\sqrt{5}) / 2\}^{n}+\{(1-\sqrt{5}) / 2\}^{n}$ (cf. [4]). Let $P_{1}=\{p$: primes such that $\left.p=v_{2 n+1}, n \geqq 1\right\}$. If the set P_{1} is infinite or not is a famous open problem, but we shall consider the problem how the set P_{1} is distributed in the set of all the primes.

For any $N>0$, we put $\rho_{1}(N)=$ the number of primes p such that $p \in P_{1}$ and $p \leq N$.
As usual we put
$\pi(N)=$ the number of primes p such that $p \leq N$.

