80. On the Starlikeness of the Bernardi Integral Operator

By Rosihan M. ALI*) and D. K. THOMAS**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1991)

Abstract: Denote by A the class of functions f analytic in the unit disc D and normalised so that f(0)=f'(0)-1=0. For $f\in A$ and $-1< c \le 0$, let F_c be defined by $F_c(z)=\frac{(1+c)}{z^c}\int_0^z t^{c-1}f(t)\,dt$ for $z\in D$. We find estimates on β so that $\operatorname{Re} f'(z)>\beta$ will ensure the starlikeness of F_c .

Introduction. Denote by A the class of functions f which are analytic in the unit disc $D = \{z : |z| < 1\}$ and normalised so that f(0) = f'(0) - 1 = 0. Let R be the subclass of A satisfying Re f'(z) > 0 for $z \in D$ and S^* be the subset of starlike functions, i.e.

$$S^* = \Big\{ f \in A : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0 \text{ for } z \in D \Big\}.$$

If S denotes the subset of A consisting of univalent functions, then it is well known that $R \subset S$ and $S^* \subset S$. Krzyz [3] gave an example to show that R is not a subset of S^* . On the other hand, Singh and Singh [6] showed that $f \in R$ would imply $F_0 \in S^*$, where

$$F_0(z) = \int_0^z \frac{f(t)}{t} dt$$
.

In a later paper, Singh and Singh [7] showed that $\operatorname{Re} f'(z) > -\frac{1}{4}$ is sufficient to ensure $F_0 \in S^*$ and more recently [5] it was shown that $\operatorname{Re} f'(z) > -0.262$ implies the same.

Suppose that $f \in A$ and c > -1. For $z \in D$, the Bernardi operator [1] is defined by

(1)
$$F_{c}(z) = \frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt.$$

It was shown in [5] that Re $f'(z) > \beta$ implies $F_c \in S^*$ provided

$$(2) \qquad (1+c)\beta > \frac{\log(4/e)}{6} \left(c^2 \tan^2 \frac{\alpha^* \pi}{2} - 3\right)$$

where $1=\alpha^*+(2/\pi)\tan^{-1}\alpha^*$. We note that when c=0, $\beta=-0.193$ which is not as good an estimate as the constant -0.262. If c=1, then $\beta=-0.017$, which was also obtained in [4].

In this paper we shall improve the constant β in (2) for $-1 < c \le 0$. Results. Theorem. Suppose $f \in A$ and F_c be given by (1) and that

^{*} School of Mathematical and Computer Sciences, Universiti Sains Malaysia, Malaysia.

^{**} Department of Mathematics and Computer Science, University of Wales, United Kingdom.